Огромные пространства соленых вод, простирающиеся по всему земному шару, называют Мировым океаном. Он представляет собой самостоятельный географический объект со своеобразным геологическим и геоморфологическим строением его котловины и берегов, спецификой химического состава вод, особенностями протекающих в них физических процессов. Все эти составляющие природного комплекса влияют на хозяйство Мирового океана.

Структура и форма мирового океана

Скрытой под океанскими водами части земной коры присущи определенная внутренняя структура и внешние формы. Они связаны между собой создающими их геологическими процессами, которые вместе с тем выражены в строении и рельефе дна океана.

К наиболее крупным формам относятся следующие: шельф, или материковая отмель, - обычно мелководная морская терраса, окаймляющая материк и продолжающая его под водой. В основном это затопленная морем прибрежная равнина со следами древних речных долин и береговых линий, существовавших при более низких, чем современные, положениях уровня моря. Средняя глубина шельфа примерно 130 м, но в некоторых районах она достигает сотен и даже тысячи метров. Ширина шельфа в Мировом океане изменяется от десятков метров до тысячи километров. В целом шельф занимает около 7% площади Мирового океана.

Материковый склон - наклон дна от внешнего края шельфа к глубинам океана. Средний угол наклона этого рельефа дна около 6°, но есть районы, где его крутизна увеличивается до 20-30°. Иногда материковый склон образует отвесные уступы. Ширина материкового склона обычно около 100 км.

Материковое подножие - широкая, наклонная, слегка всхолмленная равнина, расположенная между нижней частью материкового склона и океаническим ложем. Ширина материкового подножия может достигать сотен километров.

Ложе океана - глубокая (порядка 4-6 км) и наиболее обширная (более 2/3 всей площади Мирового океана) область океанического дна со значительно расчлененным рельефом. Здесь заметно выражены глобальные горные сооружения, глубоководные впадины, абиссальные холмы и равнины. Во всех океанах отчетливо прослеживаются срединно-океанические хребты гигантские валообразные структуры большой протяженности, образующие продольные гряды, разделенные по осевым линиям глубокими впадинами (рифтовыми долинами), на дне которых практически отсутствует осадочный слой.

Наибольшие глубины Мирового океана встречаются в глубоководных желобах. В одном из них (Марианский желоб) отмечена максимальная - 11022 м - глубина Мирового океана.

Количественной характеристикой химического состава морской воды служит соленость - масса (в граммах) твердых минеральных веществ, содержащихся в 1 кг морской воды. За единицу солености принимают 1 грамм солей, растворенных в 1 кг морской воды, и называют ее промилле, обозначая знаком %о. Средняя соленость Мирового океана равна 35,00%о, но по районам она варьирует в широких пределах.

Физические свойства морской воды в отличие от дистиллированной зависят не только от и , но и от солености, которая особенно сильно влияет на плотность, температуру наибольшей плотности и температуру замерзания морской воды. Именно от этих свойств во многом зависит развитие различных физических процессов, протекающих в Мировом океане.

Океан постоянно находится в движении, которое вызывают : космические, атмосферные, тектонические и др. Динамика океанских вод проявляется в разных формах и осуществляется, в общем в вертикальном и горизонтальном направлениях. Под воздействием приливообразующих сил Луны и Солнца в Мировом океане возникают приливы - периодические повышения и понижения уровня океана и соответствующие горизонтальные, поступательные движения воды, называемые приливными течениями. Ветер, дующий над океаном возмущает водную поверхность, в результате чего образуются ветровые волны различной структуры, формы и различных размеров. Волновые колебания, при которых частицы описывают замкнутые или почти замкнутые орбиты, проникают в подповерхностные горизонты, перемешивая верхние и нижележащие слои воды. Кроме волнения ветер вызывает перемещения поверхностных вод на большие расстояния, формируя таким образом океанские и морские течения. Конечно, в Мировом океане на возникновение течений влияют не только ветер, но и другие факторы. Однако течения ветрового происхождения играют весьма большую роль в динамике океанских и морских вод.

Для многих районов Мирового океана характерен апвеллинг - процесс вертикального движения вод, в результате которого глубинные воды поднимаются к поверхности. Он может быть вызван ветровым сгоном поверхностных вод от берега. Наиболее ярко выраженный прибрежный подъем вод наблюдается у западных берегов Северной и Южной Америки, Азии, Африки и Австралии. Поднявшиеся с глубин воды холоднее поверхностных, содержат большое количество питательных веществ (фосфатов, нитратов и т.п.), поэтому зонам апвеллинга свойственна высокая биологическая продуктивность.

В настоящее время установлено, что органическая жизнь пронизывает воды океана от поверхности до самых больших глубин. Все организмы, населяющие Мировой океан, подразделяют на три основные группы: планктон - микроскопические водоросли (фитопланктон) и мельчайшие животные (зоопланктон), свободно парящие в океанских и морских водах; нектон - рыбы и морские животные, способные самостоятельно активно передвигаться в воде; бентос - растения и животные, обитающие на дне океана от прибрежной зоны до больших глубин.

Богатый и разнообразный растительный и животный мир океанов и морей не только классифицируется по родам, видам, местам обитания и т.п., но и характеризуется определенными понятиями, содержащими количественные оценки фауны и флоры Мирового океана. Важнейшие из них - биомасса и биологическая продуктивность. Биомасса - это количество , выраженное в их сыром весе на единицу площади или объема (г/м 2 , мг/м 2 , г/м 3 , мг/м 3 и т.п.). Существуют различные характеристики биомассы. Ее оценивают либо по всей совокупности организмов, либо отдельно по растительному и животному миру, либо по определенным группам (планктон, нектон и т.п.) для Мирового океана в целом. В этих случаях величины биомассы выражают в абсолютных весовых единицах.

Биологическая продуктивность - это воспроизводство живых организмов в Мировом океане, что во многом аналогично понятию «плодородие почвы».

Величины биологической продуктивности определяют фито- и зоопланктон, на долю которых приходится большая часть продукции, производимой в океане. Годовая продукция одноклеточных растительных организмов благодаря большой скорости их воспроизводства во много тысяч раз превышает суммарный запас фитомассы, тогда как на суше годичная продукция растительности лишь на 6% превосходит ее биомассу. Исключительно высокий темп воспроизводства фитопланктона - существенная черта океана.

Итак, Мировой океан - это своеобразный природный комплекс. Его имеет свои физико-химические особенности и служит средой обитания для разнообразного животного и растительного мира. Воды океанов и морей тесно взаимодействуют с литосферой (берега и дно океана), материковым стоком и атмосферой. Эти сложные, неодинаковые от места к месту взаимосвязи предопределяют различные возможности хозяйственной деятельности в Мировом океане.

Причины, нарушающие равновесие: Течения Приливы и отливы Изменение атмосферного давления Ветер Береговая линия Сток воды с суши

Мировой океан – система сообщающихся сосудов. Но их уровень не всегда и не везде одинаков: на одной широте выше у западных берегов; на одном меридиане повышается с юга на север

Циркуляционные системы Горизонтальный и вертикальный перенос масс воды осуществляется в форме системы вихрей. Циклонические вихри – масса воды движется против часовой стрелки и поднимается. Антициклонические вихри – масса воды движется по часовой стрелке и опускается. Оба движения порождаются фронтальными возмущениями атмо- гидросферы.

Конвергенция и дивергенция Конвергенция – сходимость водных масс. Уровень океана повышается. Давление и плотность воды повышаются и она опускается. Дивергенция – расходимость водных масс. Уровень океана понижается. Происходит подъём глубинной воды. http: //www. youtube. com/watch? v=dce. MYk. G 2 j. Kw

Вертикальная стратификация Верхняя сфера (200 -300 м.) А) верхний слой (неск. микрометров) В) слой воздействия ветра (10 -40 м.) С) слой скачка температур (50 -100 м.) D) слой проникновения сезонной циркуляции и изменчивости температур Океанические течения захватывают только водные массы верхней сферы.

Глубинная сфера Не доходит до дна на 1000 м.

(около 70 %), состоящая из целого ряда отдельных компонентов. Всякий разбор строения М.о. связан с компонентными частными структурами океана.

Гидрологическая структура МО.

Температурная стратификация. В 1928 г. Дефантом было сформулировано теоретическое положение о горизонтальном разделении МО на две толщи вод. Верхнюю часть – океаническую тропосферу, или «Тёплый океан» и океаническую стратосферу или «Холодный океан» Граница между ними проходит наклонно, варьируясь от практически вертикального до горизонтального положения. На экваторе граница находится на глубине около 1 км, в полярных широтах может проходить почти вертикально. Воды «теплого» океана легче полярных вод и располагаются на них как на жидком дне. Несмотря на то, что теплый океан имеется практически везде и, следовательно, граница между ним и холодным океаном имеет значительную протяженность, водообмен между ними происходит только в очень немногих местах, за счет поднятия глубинных вод (апвеллинга), или опускания теплых вод (даунвеллинга).

Геофизическая структура океана (наличие физических полей). Один из факторов ее наличия – термодинамический обмен между океаном и атмосферой. По мнению Шулейкина (1963) океан надо рассматривать как тепловую машину, работающую в меридиональном направлении. Экватор – нагреватель, а полюса – холодильники. За счет циркуляции атмосферы и океанических течений происходит постоянный отток тепла от экватора к полюсам. Экватор делит океаны а 2 части с частично обособленными системами течений , а материки делят М.о. на регионы. Таким образом океанографии подразделяют МО на 7 частей: 1) Северный Ледовитый, 2) Северная часть Атлантического, 3) Северная часть Индийского, 4) Северная часть Тихого, 5) Южная часть Атлантического, 6) Южная часть Тихого, 7) Южная часть Индийского.

В океане, как и везде в географической оболочке есть граничащие поверхности (океан/атмосфера, берег/океан, дно/водная масса, холодная/теплая ВМ, более соленая/менее соленая ВМ и т.д.). Установлено, что наибольшая активность протекания химических процессов происходит именно на пограничных поверхностях (Айзатулин, 1966). Вокруг каждой такой поверхности наблюдается повышенное поле химической активности и физических аномалий. МО делят на активные слои, толщина которых при приближении к границе, которая их порождает уменьшается вплоть до молекулярного, а химическая активность и количество свободной энергии максимально возрастает. Если происходит пересечение нескольких границ, то все процессы происходят еще более активно. Максимальная активность наблюдается на побережьях, на кромке льда, на океанических фронтах (ВМ разного происхождения и характеристик).

Наиболее активны:

  1. экваториальная зона, где контактируют ВМ северной и южной частей океанов, закручивающиеся в противоположных направлениях (по или против часовой стрелки).
  2. зоны контакта океанических вод с разной глубины. В районах апвеллинга к поверхности поднимаются воды стратосферы, в которых растворено большое количество минеральных веществ, являющихся пищей для растений. В районах даунвеллина ко дну океана опускаются богатые кислородом поверхностные воды. В подобных районах биомасса увеличивается в 2 раза.
  3. районы гидротерм (подводных вулканов). Здесь формируются основанные на хемосинтезе «экологические оазисы». В них организмы существуют при температуре до +400ºС и солености до 300 ‰. Здесь обнаружены археобактерии гибнущие при +100ºС от переохлаждения и родственные существовавшим на Земле 3,8 млрд. лет назад, щетинковые черви – живущие в растворах напоминающих серную кислоту при температуре +260ºС.
  4. устья рек.
  5. проливы.
  6. подводные пороги

Наименее активны центральные часть океанов удаленные от дна и берегов.

Биологическая структура.

До середины 60-х гг. бытовало мнение, что океан может прокормить человечество. Но оказалось, что только около 2% водных масс океана насыщено жизнью. В характеристике биологической структуры океана имеется несколько подходов.

  1. Подход связан с выявлением скоплений жизни в океане. Здесь выделяется 4 статических скопления жизни: 2 пленки жизни поверхностная и придонная толщиной приблизительно по 100 м и 2 сгущения жизни: прибрежное и саргассово – скопление организмов в открытом океане, где дно не играет никакой роли, связанные с подъемами и опусканиями вод в океане, фронтальными зонами в океане,
  2. Подход Зенкевича связан с выявлением симметрии в океане существует. Здесь существует 3 плоскости симметрии в явлениях биотической среды: экваториальная, 2 меридиональных проходящих соответственно по центру океана и по центру материка. По отношению к ним происходит изменение в биомассе от берега к центру океана биомасса уменьшается. Широтные пояса в океане выделяют по отношению к экватору.

    1. экваториальная зона протяженностью около 10 0 (от 5 0 с.ш. до 5 0 ю.ш.) – полоса богатая жизнью. Очень много видов при небольшой численности каждого. Рыбопромысел обычно не очень выгоден.
    2. субтропическо-тропические зоны (2) – зоны океанических пустынь. Обитает довольно много видов, фитопланктон активен круглогодично, но биопродуктивность очень низкая. Максимальное количество организмов обитает на коралловых рифах и в мангровых зарослях (прибрежные полузатопленные водой растительные формации).
    3. зоны умеренных широт (2 зоны) имеют наибольшую биопродуктивность. Видовое разнообразие по сравнению с экватором резко уменьшается, но количество особей одного вида резко увеличивается. Это районы активного рыбопромысла. 4) полярные зоны – районы с минимальной биомассой из-за того, что фотосинтез фитопланктона в зимнее время прекращается.
  3. Экологическая классификация. Выделяют экологические группы живых организмов.

    1. планктон (от греч. Planktos – блуждающий), совокупность организмов, обитающих в толще воды и неспособных противостоять переносу течением. Состоит из бактерий, диатомовых и некоторых других водорослей (фитопланктон), простейших, некоторых кишечнополостных, моллюсков, ракообразных, икры и личинок рыб, личинок беспозвоночных (зоопланктон).
    2. нектон (от греч. nektos – плавающий), совокупность активно плавающих животных, обитающих в толще воды, способных противостоять течению и перемещаться на значительные расстояния. К нектону относятся кальмары, рыбы, морские змеи и черепахи, пингвины, киты, ластоногие и др.
    3. бентос (от греч. benthos – глубина), совокупность организмов, обитающих на грунте и в грунте дна водоемов. Часть из них передвигается по дну: морские звезды, крабы, морские ежи. Другие прикрепляются ко дну – кораллы, гребешки, водоросли. Некоторые рыбы плавают у дна или лежат на дне (скаты, камбала), могут закапываться в грунт.
    4. Выделяют и другие, более мелкие экологические группы организмов: плейстон – организмы, плавающие по поверхности; нейстон – организмы, которые прикрепляются к пленке воды сверху или снизу; гипонейстон – живут непосредственно под пленкой воды.
В строении географической оболочки МО выделяют несколько особенностей:
  1. Единство МО
  2. Внутри структуры МО выделяются круговые структуры.
  3. Океан анизотропен, т.е. передает влияние граничащих поверхностей с разной скоростью в разных направлениях. Капля воды от поверхности Атлантического океана ко дну движется 1000 лет, а с востока на запад от 50 суток до 100 лет.
  4. Океан имеет вертикальную и горизонтальную поясность, что приводит к формированию внутри океана внутренних границ более низкого ранга.
  5. Значительные размеры МО сдвигают нижнюю границу ГО в нем до 11 км глубины.
Существуют значительные сложности анализа единой географической среды океана.
  1. малая доступность для человека;
  2. сложности в разработке техники для изучения океана;
  3. малый отрезок времени в который океан изучается.

7. Структура вод Мирового океана.

Горизонтальная и вертикальная структура вод Мирового океана. Понятие о водных массах и океанических фронтах. Механизмы формирования водных масс. Методы выделения водных масс и океанических фронтов. Трансформация водных масс. Классификация водных масс и океанических фронтов.

Вертикальные структурные зоны водной толщи Мирового океана. Океаническая тропосфера, океаническая стратосфера.

8. Динамика вод Мирового океана.

Основные силы, действующие в океане. Океанические течения: понятие, классификации. Теории генезиса течений в Мировом океане.

Основные циркуляционные системы в Мировом океане. Глубинная циркуляция. Конвергенция и дивергенция. Океанические вихри.

Возникновение и развитие волнения в океане. Классификация волн. Элементы волн. Оценка степени ветрового волнения. Поведение ветровых волн у берегов различного типа. Сейши, цунами, внутренние волны. Волны в циклонах.

Основы классической теории морских волн (теория волн для глубокого моря, теория волн для мелкого моря). Уравнение баланса энергии волн. Методы расчета ветровых волн.

Физические закономерности формирования приливов. Статическая теория приливов. Динамическая теория приливов. Классификация и характеристики приливов. Неравенство приливов. Явления приливного типа в океане.

9. Уровень океана.

Понятие об уровенной поверхности. Периодические и непериодические колебания уровня.

Средний уровень: понятие, виды, методы определения. Гидрометеорологические причины колебания уровня. Динамические причины колебания уровня.

Водный баланс Мирового океана и его составляющие.

10. Морские льды в климатической системе.

Факторы образования и таяния морских льдов. Современное состояние морского ледяного покрова.

Уравнение баланса морских льдов.

Ледниково-межледниковые колебания в плейстоцене. Внутривековые изменения в распространении морских льдов. Порог неустойчивости. Автоколебания в системе «океан – атмосфера – оледенение».

Морские льды как фактор изменения климата. Морские льды и атмосферная циркуляция.

11. Система океан-атмосфера.

Общая характеристика процессов взаимодействия океана и атмосферы. Масштабы взаимодействия. Радиационный баланс океана. Теплообмен в системе океан – атмосфера и его климатообразующее значение. Уравнение теплового баланса океана и его анализ.

Влагообмен в системе океан – атмосфера. Солевой баланс и его связь с водным балансом. Газообмен в системе океан – атмосфера.

Понятие о гидрологическом цикле. Закономерности формирования гидрологического цикла. Основные уравнения, описывающие атмосферное звено гидрологического цикла. Динамическое взаимодействие океана и атмосферы.

Влияние океана на климат и погодообразующие процессы в атмосфере.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

раздела, темы

Название раздела, темы

Количество аудиторных часов

Кол-во часов УСР

Форма контроля знаний

Практические занятия

Семинарские занятия

Лабораторные занятия

Введение в предмет

Устный опрос

История океанологии и океанологических исследований

Устный опрос

Методы океанологических измерений

Защита рефератов

Геолого-геофизическая характеристика Мирового океана.

Устный опрос

Морфометрические характеристики Мирового океана

Рельеф дна Мирового океана

Проверка расчетно-графических работ

Гравитационное, магнитное и электрическое поля океана.

Проверка расчетно-графических работ

Физические свойства морской воды.

Устный опрос

Уравнение состояния морской воды

Проверка расчетно-графических работ

Тепловые свойства морской воды

Устный опрос

Аномалии физических свойств воды

Проверка расчетно-графических работ

Химические свойства морской воды

Устный опрос

Солевой баланс Мирового океана

Проверка расчетно-графических работ

Оптические и акустические свойства морской воды.

Устный опрос

Распространение света и звука в морской воде

Устный опрос

Перемешивание вод в океане

Устный опрос

Плотностная стратификация океанических вод

Устный опрос

Уровень океана

Устный опрос

Периодические и непериодические колебания уровня.

Проверка расчетно-графических работ

Водный баланс Мирового океана и его составляющие.

Проверка расчетно-графических работ

Структура вод Мирового океана

Устный опрос

Горизонтальная структура вод Мирового океана

Проверка расчетно-графических работ

Вертикальные структурные зоны вод Мирового океана

Проверка расчетно-графических работ

Динамика вод Мирового океана.

Устный опрос

Течения в Мировом океане

Проверка расчетно-графических работ

Основные циркуляционные системы в Мировом океане

Проверка расчетно-графических работ

Волнение в Мировом океане

Проверка расчетно-графических работ

Методы расчета ветровых волн

Проверка расчетно-графических работ

Динамическая и статическая теории приливов

Проверка расчетно-графических работ

Морские льды в климатической системе

Устный опрос

Уравнение баланса морских льдов

Устный опрос

Система океан-атмосфера

Устный опрос

Уравнение теплового баланса океана и его анализ

Проверка расчетно-графических работ

Понятие о гидрологическом цикле и закономерности его формирования

Устный опрос

Влияние океана на климат и погодообразующие процессы в атмосфере

Защита рефератов

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Литература

Основная

    Воробьев В.Н., Смирнов Н.П. Общая океанология. Часть 2. Динамические процессы. – СПб.: изд. РГГМУ, 1999. – 236 с.

    Егоров Н.И. Физическая океанография. – Л.: Гидрометеоиздат, 1974. – 456 с.

    Жуков Л.А. Общая океанология: (учебник для ВУЗов по специальности «Океанология»). – Л.: Гидрометеоиздат, 1976. – 376с.

    Малинин В.Н. Общая океанология. Часть 1. Физические процессы. – СПб.: изд. РГГМУ, 1998. – 342 с.

    Нешиба С. Океанология. Современные представления о жидкой оболочке Земли: Пер. с англ. – М.: Мир, 1991. – 414 с.

    Шамраев Ю.И., Шишкина Л.А. Океанология. – Л.: Гидрометеоиздат, 1980. – 382 с.

Дополнительная

    Алекин О.А., Ляхин Ю.И. Химия океана. – Л.: Гидрометеоиздат, 1984. – 344 с.

    Безруков Ю.Ф. Колебания уровня и волны в Мировом океане. Учебное пособие. – Симферополь, 2001. – 52 с.

    Безруков Ю.Ф. Океанология. Часть 1. Физические явления и процессы в океане. – Симферополь, 2006. – 162 с.

    Давыдов Л.К., Дмитриева А.А., Конкина Н.Г. Общая гидрология. – Л.: Гидрометеоиздат, 1973. – 464 с.

    Долгановский А.М., Малинин В.Н. Гидросфера Земли. – СПб.: Гидрометеоиздат, 2004. – 632 с.

    Доронин Ю.П. Взаимодействие атмосферы и океана. – Л.: Гидрометеоиздат, 1981. – 288 с.

    Доронин Ю.П. Физика океана. – СПб.: изд. РГГМУ, 2000. – 340 с.

    Захаров В.Ф., Малинин В.Н. Морские льды и климат. – СПб.: Гидрометеоиздат, 2000. – 92 с.

    Каган Б.А. Взаимодействие океана и атмосферы. – СПб.: Гидрометеоиздат, 1992. – 335 с.

    Лаппо С.С., Гулев С.К., Рождественский А.Е. Крупномасштабное тепловое взаимодействие в системе океан-атмосфера и энергоактивные области Мирового океана. – Л.: Гидрометеоиздат, 1990. – 336 с.

    Малинин В.Н. Влагообмен в системе океан – атмосфера. – СПб.: Гидрометеоиздат, 1994. – 198 с.

    Монин А.С. Гидродинамика атмосферы и океана и земных недр. – СПб.: Гидрометеоиздат, 1999. – 524с.

    Пери А.Х., Уокер Дж. М. Система океан – атмосфера. – Л.: Гидрометеиздат, 1979. – 193 с.

    Эйзенберг Д., Кауцман В. Структура и свойства воды. – Л.: Гидрометеоиздат, 1975. – 280 с.

Перечень используемых средств диагностики

    устный опрос,

    защита реферата,

    проверка расчетно-графических работ,

Примерный перечень заданий УСР

Тема «Методы океанологических измерений».

Задание 1. Зарисовать в рабочей тетради и подготовить краткое описание принципа работы основных гидрологических приборов (радиометра, батометра, СТД-зонда, океанологических манометров и термометров, приборов для исследования морского дна и биологических исследований).

    «Рейсовые наблюдения в Мировом океане»,

    «Стационарные наблюдения в Мировом океане»,

    «Дистанционные наблюдения за Мировым океаном»,

    «Методы прямых океанологических измерений»,

    «Методы косвенных океанологических измерений»,

    «Методы повышения качества океанологических измерений»,

    «Основные виды обработки океанологических наблюдений»,

    «Математическое моделирование океанологических процессов»,

    «Применение ГИС-технологий для решения океанологических задач»,

    «Базы океанологических данных».

Тема «Гравитационное, магнитное и электрическое поля океана».

Задание 1. Построить графики, отражающие зависимость электропроводности морской воды: а) от солености, б) от температуры, в) от давления.

Задание 2. На контурную карту Мирового океана нанести оси магнитных аномалий срединно-океанических хребтов.

Тема «Аномалии физических свойств воды».

Задание 1. Построить графики зависимости температур замерзания и наибольшей плотности воды от солености и проанализировать их применительно к морским и солоноватым водам.

Задание 2. Самостоятельно, проработав литературные источники, подготовить и заполнить таблицу «Изменение физических свойств воды при изотопном замещении».

Тема «Водный баланс Мирового океана и его составляющие».

Задание 1. Построить и проанализировать таблицу «Среднее широтное распределение составляющих водного баланса Земли».

Задание 2. Подготовить в текстовой форме анализ «Сравнительная характеристика составляющих водного баланса океанов» (по вариантам: Атлантический – Тихий, Тихий – Индийский, Атлантический – Индийский, Северный Ледовитый – Индийский)

Тема «Горизонтальная структура вод Мирового океана».

Задание 1. На контурную карту нанести главные океанические и динамические фронты Мирового океана.

Задание 2. По выданному преподавателем заданию (по вариантам) осуществить графический анализ T,S-кривых океанологической станции.

Тема «Вертикальные структурные зоны вод Мирового океана».

Задание 1. Построить графики распределения температуры и солёности по вертикали для различных типов стратификации на основе предоставленных преподавателем данных (по вариантам).

Задание 2. Проанализировать географические типы распределения температуры и солености по глубине в Мировом океане (по вариантам: тропический – умеренных широт, субтропический – субполярный, экваториальный – субтропический, тропический – полярный).

Тема «Волнение в Мировом океане».

Задание 1. Зарисовать схему «Изменение профиля трохоидальной волны с глубиной» и подготовить ее анализ в текстовой форме.

Задание 2. Самостоятельно, проработав литературные источники, подготовить и заполнить таблицу «Основные характеристики поступательных и стоячих волн с глубиной»

Тема «Влияние океана на климат и погодообразующие процессы в атмосфере».

Задание 1. Подготовить в текстовой форме сравнительный анализ данных карты «Тепло, получаемое или теряемое поверхностью океана в связи с действием морских течений» (по вариантам: Атлантический – Тихий, Тихий – Индийский, Атлантический – Индийский, Северный Ледовитый – Индийский).

Задание 2. Подготовить и защитить реферат на одну из следующих тем:

1) «Мелкомасштабное взаимодействие океана и атмосферы»,

2) «Мезомасштабное взаимодействие океана и атмосферы»,

3) «Крупномасштабное взаимодействие океана и атмосферы»,

4) «Система «Эль-Ниньо – Южное колебание» как проявление междугодичной изменчивости системы «океан – атмосфера»,

5) «Реакция системы «океан-атмосфера» на изменение альбедо поверхности суши»,

6) «Реакция системы «океан-атмосфера» на изменение концентрации атмосферного СО 2 »,

7) «Реакция системы «океан-атмосфера» на изменение соотношения площадей океана и суши»,

8) «Реакция системы «океан-атмосфера» на изменение растительного покрова»,

9) «Теплообмен в системе «океан – атмосфера»,

10) «Влагообмен в системе «океан – атмосфера».

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УВО

Название учебной дисциплины, с которой требуется согласование

Название

Предложения об изменениях в содержании учебной программы учреждения высшего образования по учебной дисциплине

Решение, принятое кафедрой, разработавшей учебную программу (с указанием даты и номера протокола)

1. Геофизика

Изменений не требуется

Протокол №7 от 23.02.2016 г.

2. Гидрология

Общего землеведения и гидрометеорологии

Изменений не требуется

Протокол №7 от 23.02.2016 г.

3. Метеорология

и климатология

Общего землеведения и гидрометеорологии

Изменений не требуется

Протокол №7 от 23.02.2016 г.

4. Синоптическая метеорология

Общего землеведения и гидрометеорологии

Изменений не требуется

Протокол №7 от 23.02.2016 г.

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ УВО

на _____/_____ учебный год

процессеОсновная образовательная программа

... дисциплины «Физическая география материков и океанов » студент должен : Знать: состояние и перспективы развития науки, ее роль в современном научном знании ...

  • Программа

    ... Атмосферой называют газовую, воздушную оболочку, окру­жающую земной шар ... чающую в себя Мировой океан , воды суши... Различные компоненты городской среды тесно связаны между собой. В процессе их взаимодействия ... его творческое саморазвитие. Важная роль в формировании ...

  • Дополнения и изменения

    Основание

    Гидрологическая структура Мирового океана во многом определяет распределение органического мира. Свойства океанических вод и особенности циркуляции позволяют разделить водные массы на поверхностные, промежуточные, глубинные и придонные.
    Поверхностные воды вследствие высокой перемешиваемости однородны, толщина их слоя из-за особенностей теплообмена заметно меняется по сезонам и в зависимости от географической широты района. Обычно за нижнюю границу поверхностных вод принимают глубину, на которой амплитуда годового хода температуры практически неразличима. В среднем она располагается на глубине 200—300 м, в районах циклонических циркуляции и дивергенций приподнимается до 150—200 м, а в областях антициклонических круговоротов и конвергенции опускается до 300—400 м. В широтном направлении поверхностные воды подразделяются на экваториальные, тропические, субполярные и полярные. Первые отличаются наиболее высокой температурой, пониженной соленостью и плотностью, сложной циркуляцией. Для тропических вод характерна высокая соленость и плотность. Субполярные воды в различных океанах довольно изменчивы по своим характеристикам. Полярные воды отличаются отрицательными температурами (—1,2-1,5°), низкой соленостью (32,5—34,6 %о), формируются выше арктического и антарктического фронтов.
    Промежуточные воды залегают под поверхностными до глубины 1000—1200 м. Максимальной толщины их слой достигает в полярные областях и центральных областях антициклонических круговоротов В экваториальной зоне, где происходит подъем вод, толщина слоя промежуточных вод уменьшается до 600—900 м.
    Антарктические промежуточные воды образуются в результате деятельности Антарктического циркумполярного течения. Движение придонных вод в южном направлении компенсируется оттоком к северу глубинных и поверхностных вод. Далее к северу антарктические компоненты постепенно трансформируются, и эти воды возвращаются в антарктические широты в виде циркумполярных глубинных вод. Они содержат заметную примесь относительно более соленых глубинных вод из Южной Атлантики. При течении на восток эти водные массы полностью включаются в циркумполярную циркуляцию. Около 55—60 % составляют антарктические поверхностные воды, остальная часть — антарктические придонные воды. Циркумполярные глубинные воды приносят большое количество тепла в антарктические моря, где оно расходуется на нагревание холодных вод и атмосферы. Антарктические поверхностные воды прослеживаются до зоны между 50° и 60° ю.ш., где довольно быстро исчезают, сталкиваясь с менее плотными субантарктическими поверхностными водами, опускаются под них и принимают участие в формировании антарктических промежуточных вод, которые устремляются на север. Зона контакта между двумя поверхностными водными массами известна как зона антарктической конвергенции.
    Глубинные воды формируются в высоких широтах в результате смешения поверхностных и промежуточных вод. Они однородны и простираются до глубин 3000—4000 м.
    Самым мощным течением в Мировом океане является Антарктическое циркумполярное течение (течение Западных ветров). Оно дрейфует вдоль берегов Антарктиды, пересекая три океана, перемещая ежесекундно более 250 млн м3 морской воды. Его протяженность до 30 тыс. км, ширина — 1000—1500 км, глубина от 2 до 3 км. Скорость в верхних слоях достигает 2 км/ч.
    Придонные воды также образуются вследствие опускания вышележащих вод главным образом в высоких широтах.
    Вся толща океанской воды находится в непрерывном движении, которое возбуждается термогалинными (нагревание, охлаждение, осадки, испарение) и механическими факторами (касательное напряжение ветра, атмосферное давление), а также приливообразующими силами.
    Общая схема возникновения течений (рис. 5) в океане в основном определяется характером циркуляции атмосферы и географическим расположением материков. Разделяют систему горизонтальных и вертикальных течений.
    В тропической зоне ветра (пассаты) дуют с большим постоянством и силой с востока на запад, и лишь вблизи экватора существует штилевая зона. Соответственно в океане образуются северное и южное пассатные течения, а между ними — противоположно направленное (с запада на восток) межпассатное течение. Пассатные ветры создают экваториальное течение, идущее с востока на запад. Встретив материковый барьер, оно поворачивает в Северном полушарии — направо, в Южном — налево. По обе стороны от экватора образуются кольцевые течения, направленные в Северном полушарии по часовой стрелке, в Южном — против часовой.

    Рис. 5. Схема образования течений (по А.С. Константинову, 1986)
    В северной и южной умеренных зонах господствуют западные ветра, а в высоких широтах — восточные. Под их воздействием возникают течения, разнонаправленность которых ведет к формированию гигантских круговоротов океанской воды. К северу от экватор располагается область северного тропического круговорота (против часовой стрелки), далее — субтропического (по часовой стрелке) субарктического (против часовой стрелки). В Южном полушария имеются три аналогичных круговорота, но с иным направлением вращения. Рассматриваемая циркуляция обусловливает восточно-западную асимметрию температурного поля океана и определяет распространение морских организмов.
    Жизнь во всем Мировом океане напрямую зависит от Антарктического циркум континентального течения (АЦТ), поднимающего на поверхность богатые питательными веществами глубинные воды. Результаты исследований дают основания считать, что морская жизнь должна обладать большей чувствительностью к изменениям климата, чем считалось до этого — ведь согласно большинству моделей изменений климата при этом должна измениться и океаническая циркуляция. Хотя океанографы выделили несколько направлений океанической циркуляции, новое исследование, проведенное в Принстонском университете, показало, что три четверти всей биологической активности в океанах зависит только от АЦТ. По расчетам при изменении этой циркуляции биологическая продуктивность всех океанов снизится в четыре раза.
    Помимо поверхностных течений, в Мировом океане существует сложная система глубинных. Придонные воды, заполняющие глубины Мирового океана, в основном формируются на шельфе Антарктиды. Здесь в результате образования льда соленость воды повышается, и она (как более плотная) погружается на дно и движется к северу. Приток хорошо аэрированных антарктических вод снабжает кислородом глубины океанов, обеспечивая существование здесь жизни.
    Атлантическая треска мигрирует между нерестилищами, расположенными к югу от Исландии, и районами питания вдоль Восточно-Гренландского течения.
    Скорость глубинных течений может достигать 10—20 см/с, т. е. соизмерима со средними скоростями поверхностных течений. Это справедливо в отношении как среднеглубинных течений, так и придонных потоков.
    Вертикальные перемещения воды могут быть вызваны изменением плотности расположенных друг над другом слоев воды, погружения ее у наветренного берега и подъема у подветренного, вследствие прохождения циклонов и антициклонов. Каждому погружению водных масс соответствует компенсационное поднятие воды в другом месте. Различают районы конвергенции (схождений) водных масс, где поверхностные воды погружаются в глубину, и районы дивергенций (расхождений), где глубинные воды выходят на поверхность.
    Вместе с глубинными водами на поверхность поднимаются соединения азота и фосфора, это приводит к бурному развитию фитопланктона в зонах апвеллинга. Фитопланктоном питаются рачки, служащие кормом для рыбы. Поэтому здесь обычно бывает больше рыбы, чем на других участках океана.
    Поверхность океана имеет сложный динамический рельеф, особенности которого взаимосвязаны с циркуляцией вод. Дивергенции, приуроченные к ложбинам динамического рельефа в центральных частях циклонических круговоротов, в поле дрейфовых течений приблизительно совпадают с областями сгона вод и их подъема из глубин — апвеллинга (рис. 6). Конвергенции, приуроченные к гребням динамического рельефа в центральных частях антициклонических круговоротов, в области дрейфовых течений приблизительно совпадают с областями нагона вод и опускания вглубь — даунвеллинга.
    Огромное значение в гидродинамике океана имеют волны, в основном вызываемые ветром и действием приливных сил, которые одновременно обусловливают и возникновение приливно-отливных течений (рис. 7). Различают полусуточные, суточные и смешанные приливы.
    В Мировом океане функционирование гидрологического звена идет в двух взаимно противоположных направлениях: с одной стороны, оно направлено на формирование относительно устойчивой динамической структуры океана — обособление водных масс, страти-

    Рис. 7. Динамика приливной волны на о. Сахалин (по: Атлас, 2002)
    фикацию его вод, а с другой — на разрушение этих структур, выравнивание градиентов физико-химических свойств морской воды.
    Гидрологические структуры благодаря инерционности водной среды обладают относительной устойчивостью во времени, имеют естественные границы, отчего их роль в физико-географической дифференциации Мирового океана особенно значительна. Однако из-за подвижности вод аквальные экосистемы могут разрушаться, иметь зыбкие расплывчатые границы. Результатом функционирования гидрологического звена Мирового океана является упорядочение гидроклиматических условий.