Фанатичным математикам, обожающим подсчитывать всё на свете, давно хотелось узнать ответ на фундаментальный вопрос: сколько всего частиц во Вселенной? Учитывая, что приблизительно 5 триллионов атомов водорода могут поместиться на одной лишь головке булавки, при этом каждый из них состоит из 4 элементарных частиц (1 электрон и 3 кварка в протоне), можно с уверенностью предположить, что число частиц в наблюдаемой Вселенной находится за гранью человеческого представления.

Как бы то ни было, профессор физики Тони Падилла из Нотингемского университета разработал способ оценки общего количества частиц во Вселенной, не принимая в расчет фотоны или нейтрино, поскольку у них отсутствует (вернее, практически отсутствует) масса:

Для своих расчетов ученый использовал данные, полученные с помощью телескопа Планка, которые использовались для измерения реликтового излучения, являющегося самым старым из видимого светового излучения во Вселенной и, таким образом, формирующего подобие ее границы. Благодаря телескопу, ученые смогли оценить плотность и радиус видимой Вселенной.

Другая необходимая переменная — это доля вещества, содержащаяся в барионах. Эти частицы состоят из трех кварков, и наиболее известными барионами на сегодняшний день являются протоны и нейтроны, а потому в своем примере Падилла рассматривает именно их. Наконец, для расчета необходимо знание масс протона и нейтрона (которые примерно совпадают друг с другом), после чего можно приступать к вычислениям.

Что делает физик? Он берет плотность видимой Вселенной, умножает ее на долю плотности одних лишь барионов, а затем умножает результат на объем Вселенной. Получившуюся в результате массу всех барионов во Вселенной он делит на массу одного бариона и получает общее количество барионов. Но барионы нам не интересны, наша цель — элементарные частицы.

Известно, что каждый барион состоит из трех кварков — как раз они-то нам и нужны. Более того, общее число протонов (как все мы знаем из школьного курса химии) равно общему числу электронов, которые тоже являются элементарными частицами. Помимо этого, астрономы установили, что 75% вещества во Вселенной представлено водородом, а оставшиеся 25% - гелием, прочими же элементами при расчетах такого масштаба можно пренебречь. Падилла вычисляет количество нейтронов, протонов и электронов, после чего умножает две первые позиции на три — и у нас наконец есть итоговый результат.

3.28х10 80 . Более трех вигинтиллионов.

328.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.

Самое интересное, что, с учетом масштаба Вселенной, эти частицы не заполняют даже большую часть от ее общего объема. В результате, на один кубометр Вселенной приходится лишь одна (!) элементарная частица.

Инструкция

Если атом электронейтрален, то число электронов в нем равно числу протонов. Число протонов соответствует атомному элемента в таблице Менделеева. Например, имеет первый атомный номер, поэтому его атом имеет один . Атомный номер натрия - 11, поэтому атом натрия имеет 11 электронов.

Атом также может терять или присоединять . В этом случае атом становится ионом, имеющим электрический положительный или . Допустим, один из электронов натрия покинул электронную оболочку атома. Тогда атом натрия станет положительно заряженным ионом, имеющим заряд +1 и 10 электронов на своей электронной оболочки. При присоединении электронов атом становится отрицательным ионом.

Атомы химических элементов могут также соединяться в молекулы, наименьшую частицу вещества. Количество электронов в молекуле равно количеству электронов всех входящих в нее атомов. Например, молекула воды H2O состоит из двух атомов водорода, каждый из которых имеет по одному электрону, и атома кислорода, который имеет 8 электронов. То есть, в молекуле воды всего 10 электронов.

Атом химического элемента состоит из атомного ядра и электронной оболочки. В состав атомного ядра входят два типа частиц - протоны и нейтроны. Почти вся масса атома сосредоточена в ядре, потому что протоны и нейтроны намного тяжелее электронов.

Вам понадобится

  • атомный номер элемента, N-Z диаграмма.

Инструкция

Нейтроны не имеют электрического заряда, то есть их электрический заряд равен нулю. Это и представляет основную сложность при числа нейтронов - атомный номер элемента или его электронная оболочка не дают однозначного ответа на этот вопрос. Например, в ядре всегда содержится 6 протонов, однако протонов в нем может быть 6 и 7. Разновидности ядер элемента с разным количеством нейтронов в ядре изотопами этого элемента. Изотопы могут быть природными, а могут быть и получены .

Ядра атомов обозначают буквенным символом химического элемента из таблицы Менделеева. Справа от символа вверху и внизу стоят два числа. Верхнее число A - это массовое число атома. A = Z+N, где Z - заряд ядра (число протонов), а N - число нейтронов. Нижнее число - это Z - заряд ядра. Такая запись дает информацию о количестве нейтронов в ядре. Очевидно, что оно равно N = A-Z.

У разных изотопов одного химического элемента число A меняется, что можно увидеть в записи этого изотопа. Определенные изотопы имеют свои оригинальные названия. Например, обычное ядро водорода не имеет нейтронов и имеет один протон. Изотоп водорода дейтерий имеет один нейтрон (A = 2, цифра 2 сверху, 1 снизу), а изотоп тритий - два нейтрона (A = 3, цифра 3 сверху, 1 снизу).

Зависимость числа нейтронов от числа протонов отражена на так называемой N-Z диаграмме атомных ядер. Устойчивость ядер зависит от отношения числа нейтронов и числа протонов. Ядра легких нуклидов наиболее устойчивы при N/Z = 1, то есть при равенстве количества нейтронов и протонов. С ростом массового числа область устойчивости сдвигается к величинам N/Z>1, достигая величины N/Z ~ 1,5 для наиболее тяжелых ядер.

Видео по теме

Источники:

  • Строение атомного ядра
  • как найти количество нейтронов

Атом состоит из ядра и окружающих его электронов, которые вращаются вокруг него по атомным орбиталям и образуют электронные слои (энергетические уровни). Количество отрицательно заряженных частиц на внешних и внутренних уровнях определяет свойства элементов. Число электронов, содержащихся в атоме, можно найти, зная некоторые ключевые моменты.

Вам понадобится

  • - бумага;
  • - ручка;
  • - периодическая система Менделеева.

Инструкция

Чтобы определить количество электронов, воспользуйтесь периодической системой Д.И. Менделеева. В этой таблице элементы расположены в определенной последовательности, которая тесно связана с их атомным строением. Зная, что положительный всегда равен порядковому номеру элемента, вы легко найдете количество отрицательных частиц. Ведь известно - атом в целом нейтрален, а значит, число электронов будет равно числу и номеру элемента в таблице. Например, равен 13. Следовательно, количество электронов у него будет 13, у натрия – 11, у железа – 26 и т.д.

Если вам необходимо найти количество электронов на энергетических уровнях, сначала повторите принцип Пауля и правило Хунда. Потом распределите отрицательные частицы по уровням и подуровням с помощью все той же периодической системы, а точнее ее периодов и групп. Так номер горизонтального ряда (периода) указывает на количество энергетических слоев, а вертикального (группы) – на число электронов на внешнем уровне.

Не забывайте о том, что количество внешних электронов равно номеру группы только у элементов, которые находятся в главных подгруппах. У элементов побочных подгрупп количество отрицательно заряженных частиц на последнем энергетическом уровне не может быть больше двух. Например, у скандия (Sc), находящегося в 4 периоде, в 3 группе, побочной подгруппе, их 2. В то время как у галия (Ga), который находится в том же периоде и той же группе, но в главной подгруппе, внешних электронов 3.

При подсчете электронов в атоме , учтите, что последние образуют молекулы. При этом атомы могут принимать, отдавать отрицательно заряженные частицы или образовывать общую пару. Например, в молекуле водорода (H2) общая пара электронов. Другой случай: в молекуле фторида натрия (NaF) общая сумма электронов будет равна 20. Но в ходе химической реакции атом натрия отдает свой электрон и у него остается 10, а фтор принимает - получается тоже 10.

Полезный совет

Помните, что на внешнем энергетическом уровне может быть только 8 электронов. И это не зависит от положения элемента в таблице Менделеева.

Источники:

  • a так как атом то номер элемента

Атомы состоят из субатомных частиц - протонов, нейтронов и электронов. Протоны представляют собой положительно заряженные частицы, которые находятся в центре атома, в его ядре. Вычислить число протонов изотопа можно по атомному номеру соответствующего химического элемента.

Модель атома

Для описания свойств атома и его структуры используется модель, известная под названием «Модель атома по Бору». В соответствии с ней структура атома напоминает солнечную систему - тяжелый центр (ядро) находится в центре, а более легкие частицы движутся по орбите вокруг него. Нейтроны и протоны образуют положительно заряженное ядро, а отрицательно заряженные электроны движутся вокруг центра, притягиваясь к нему электростатическими силами.

Элементом называют вещество, состоящее из атомов одного типа, он определяется числом протонов в каждом из них. Элементу присваивают свое имя и символ, например, водород (H) или кислород (О). Химические свойства элемента зависят от числа электронов и, соответственно, числа протонов, содержащихся в атомах. Химические характеристики атома не зависят от числа нейтронов, так как не имеют электрического заряда. Однако их число влияет на стабильность ядра, изменяя общую массу атома.

Изотопы и число протонов

Изотопами называют атомы отдельных элементов с различным числом нейтронов. Данные атомы химически идентичным, однако обладают разной массой, также они отличаются своей способностью испускать излучение.

Атомный номер (Z) - это порядковый номер химического элемента в периодической системе Менделеева, он определяется числом протонов в ядре. Каждый атом характеризуется атомным номером и массовым числом (А), которое равно суммарному числу протонов и нейтронов в ядре.

Элемент может иметь атомы с различным числом нейтронов, но количество протонов остается неизменным и равно числу электронов нейтрального атома. Для того, чтобы определить, сколько протонов содержится в ядре изотопа, достаточно посмотреть на его атомный номер. Число протонов равно номеру соответствующего химического элемента в периодической таблице Менделеева.

  • Радиация, Введение в радиационную защиту
  • Ассоциативные примеры процесса эзоосмоса, передачи и распределения энергии и информации
  • Состав ядра атома. Расчет протонов и нейтронов
  • Формулы реакций, лежащие в основе управляемого термоядерного синтеза
  • Состав ядра атома. Расчет протонов и нейтронов


    Согласно современным представлениям, атом состоит из ядра и расположенных вокруг него электронов. Ядро атома, в свою очередь, состоит из более малых элементарных частиц ‒ из определенного количества протонов и нейтронов (общепринятое название для которых – нуклоны), связанных между собой ядерными силами.

    Количество протонов в ядре определяет строение электронной оболочки атома. А электронная оболочка определяет физико-химические свойства вещества. Число протонов соответствует порядковому номеру атома в периодической системе химических элементов Менделеева, именуется также зарядовое число, атомный номер, атомное число. Например, число протонов у атома Гелия – 2. В периодической таблице он стоит под номером 2 и обозначается как He 2 Символом для обозначения количества протонов служит латинская буква Z. При записи формул зачастую цифра, указывающая на количество протонов, располагается снизу от символа элемента либо справа, либо слева: He 2 / 2 He.

    Количество нейтронов соответствует определённому изотопу того или иного элемента. Изотопы – это элементы с одинаковым атомным номером (одинаковым количеством протонов и электронов), но с разным массовым числом. Массовое число – общее количество нейтронов и протонов в ядре атома (обозначается латинской буквой А). При записи формул массовое число указывается вверху символа элемента с одной из сторон: He 4 2 / 4 2 He (Изотоп Гелия – Гелий - 4)

    Таким образом, чтобы узнать число нейтронов в том или ином изотопе, следует от общего массового числа отнять число протонов. Например, нам известно, что в атоме Гелия-4 He 4 2 cодержится 4 элементарные частицы, так как массовое число изотопа – 4 . При этом нам известно, что He 4 2 меет 2 протона. Отняв от 4 (общее массовое число) 2 (кол-во протонов) получаем 2 – количество нейтронов в ядре Гелия-4.

    ПРОЦЕСС РАСЧЁТА КОЛИЧЕСТВА ФАНТОМНЫХ ЧАСТИЧЕК ПО В ЯДРЕ АТОМА. В качестве примера мы не случайно рассмотрели Гелий-4 (He 4 2), ядро которого состоит из двух протонов и двух нейтронов. Поскольку ядро Гелия-4, именуемое альфа-частицей (α-частица) обладает наибольшей эффективностью в ядерных реакциях, его часто используют для экспериментов в этом направлении. Стоит отметить, что в формулах ядерных реакций зачастую вместо He 4 2 используется символ α.

    Именно с участием альфа-частиц была проведена Э. Резерфордом первая в официальной истории физики реакция ядерного превращения. В ходе реакции α-частицами (He 4 2) «бомбардировались» ядра изотопа азота (N 14 7), вследствие чего образовался изотоп оксигена (O 17 8) и один протон (p 1 1)

    Данная ядерная реакция выглядит следующим образом:

    Осуществим расчёт количества фантомных частичек По до и после данного преобразования.

    ДЛЯ РАСЧЁТА КОЛИЧЕСТВА ФАНТОМНЫХ ЧАСТИЧЕК ПО НЕОБХОДИМО:
    Шаг 1. Посчитать количество нейтронов и протонов в каждом ядре:
    - количество протонов указано в нижнем показателе;
    - количество нейтронов узнаем, отняв от общего массового числа (верхний показатель) количество протонов (нижний показатель).

    Шаг 2. Посчитать количество фантомных частичек По в атомном ядре:
    - умножить количество протонов на количество фантомных частичек По, содержащихся в 1 протоне;
    - умножить количество нейтронов на количество фантомных частичек По, содержащихся в 1 нейтроне;

    Шаг 3. Сложить количество фантомных частичек По:
    - сложить полученное количество фантомных частичек По в протонах с полученным количеством в нейтронах в ядрах до реакции;
    - сложить полученное количество фантомных частичек По в протонах с полученным количеством в нейтронах в ядрах после реакции;
    - сравнить количество фантомных частичек По до реакции с количеством фантомных частичек По после реакции.

    ПРИМЕР РАЗВЁРНУТОГО ВЫЧИСЛЕНИЯ КОЛИЧЕСТВА ФАНТОМНЫХ ЧАСТИЧЕК ПО В ЯДРАХ АТОМОВ.
    (Ядерная реакция с участием α-частицы (He 4 2), провёденная Э. Резерфордом в 1919 году)

    ДО РЕАКЦИИ (N 14 7 + He 4 2)
    N 14 7

    Количество протонов: 7
    Количество нейтронов: 14-7 = 7
    в 1 протоне – 12 По, значит в 7 протонах: (12 х 7) = 84;
    в 1 нейтроне – 33 По, значит в 7 нейтронах: (33 х 7) = 231;
    Общее количество фантомных частичек По в ядре: 84+231 = 315

    He 4 2
    Количество протонов – 2
    Количество нейтронов 4-2 = 2
    Количество фантомных частичек По:
    в 1 протоне – 12 По, значит в 2 протонах: (12 х 2) = 24
    в 1 нейтроне – 33 По, значит в 2 нейтронах: (33 х 2) = 66
    Общее количество фантомных частичек По в ядре: 24+66 = 90

    Итого, количество фантомных частичек По до реакции

    N 14 7 + He 4 2
    315 + 90 = 405

    ПОСЛЕ РЕАКЦИИ (O 17 8) и один протон (p 1 1):
    O 17 8
    Количество протонов: 8
    Количество нейтронов: 17-8 = 9
    Количество фантомных частичек По:
    в 1 протоне – 12 По, значит в 8 протонах: (12 х 8) = 96
    в 1 нейтроне – 33 По, значит в 9 нейтронах: (9 х 33) = 297
    Общее количество фантомных частичек По в ядре: 96+297 = 393

    p 1 1
    Количество протонов: 1
    Количество нейтронов: 1-1=0
    Количество фантомных частичек По:
    В 1 протоне – 12 По
    Нейтроны отсутствуют.
    Общее количество фантомных частичек По в ядре: 12

    Итого, количество фантомных частичек По после реакции
    (O 17 8 + p 1 1):
    393 + 12 = 405

    Сравним количество фантомных частичек По до и после реакции:


    ПРИМЕР СОКРАЩЁННОЙ ФОРМЫ ВЫЧИСЛЕНИЯ КОЛИЧЕСТВА ФАНТОМНЫХ ЧАСТИЧЕК ПО В ЯДЕРНОЙ РЕАКЦИИ.

    Известной ядерной реакцией является реакция взаимодействия α-частиц с изотопом бериллия, прикоторой впервые был обнаружен нейтрон, проявивший себя как самостоятельная частица в результате ядерного преобразования. Данная реакция была осуществлена в 1932 году английским физиком Джеймсом Чедвиком. Формула реакции:

    213 + 90 → 270 + 33 - количество фантомных частичек По в каждом из ядер

    303 = 303 - общая сумма фантомных частичек По до и после реакции

    Количества фантомных частичек По до и после реакции равны.

    Атом химического элемента состоит из ядра и электронов . Количество электронов в атоме зависит от его атомного номера. Электронная конфигурация определяет распределение электрона по оболочкам и подоболочкам.

    Вам понадобится

    • Атомный номер, состав молекулы

    Инструкция

    Если атом электронейтрален, то число электронов в нем равно числу протонов. Число протонов соответствует атомному номеру элемента в таблице Менделеева. Например, водород имеет первый атомный номер, поэтому его атом имеет один электрон. Атомный номер натрия - 11, поэтому атом натрия имеет 11 электронов .

    Атом также может терять или присоединять электроны. В этом случае атом становится ионом, имеющим электрический положительный или отрицательный заряд. Допустим, один из электронов натрия покинул электронную оболочку атома. Тогда атом натрия станет положительно заряженным ионом, имеющим заряд +1 и 10 электронов на своей электронной оболочки. При присоединении электронов атом становится отрицательным ионом.

    Атомы химических элементов могут также соединяться в молекулы, наименьшую частицу вещества. Количество электронов в молекуле равно количеству электронов всех входящих в нее атомов. Например, молекула воды H2O состоит из двух атомов водорода, каждый из которых имеет по одному электрону, и атома кислорода, который имеет 8 электронов . То есть, в молекуле воды всего 10 электронов .

    Ядро всех атомов (за исключением водорода) состоит из положительно заряженных протонов и не несущих электрического заряда нейтронов.

    Масса протона составляет 1,67х10-24 г, а электрона - всего 9,1х10-28 г, т.е. разница составляет 4 порядка, Размеры: протона и нейтрона - порядка 10-16 см, а электрона - порядка 10-13 см, т.е. соотношение как раз обратное.

    При этом размер атомов имеет порядок 10-8 см, т.е. 100 000 раз больше размера электрона и в 100 000 000 раз больше размеров протона, соответственно, атом обладает весьма «ажурной» структурой.

    Различие в массе между протонами и нейтронами - всего в 1,0014 раза, что практически несущественно и этой разницей можно пренебречь. Поэтому во всех расчетах массы протона и нейтрона принимаются за 1, а масса электрона - за 0 (т.к. при различии на 4 порядка даже суммарная масса сотни электронов будет столь мала, что ей можно пренебречь, а атомов, в которых число электронов хотя бы приближалось к 1000 в природе не известно, да и теоретически возможность их существования весьма сомнительна).

    В целом атом электрически нейтрален. Число положительных зарядов (протонов) уравновешивается числом отрицательных зарядов (электронов).

    Если атом теряет или приобретает некоторое число электронов, он переходит в заряженное (ионизированное) состояние.

    Химическая индивидуальность атома определяется числом его протонов, т.е. зарядом ядра.

    Разновидности одного и того же химического элемента по числу нейтронов (с разными атомными массами) называются изотопами.

    Максимально возможное количество электронов на каждом уровне: 2n2 (число Паули), где n - номер оболочки.

    Т.о., на 1 уровне могут размещаться 2 электрона, на 2 уровне - 8 электронов, на 3 - 18, на 4 - 32 электрона и т.д.

    Внутри каждого из уровней выделяются подуровни, образуемые различными типами электронов (различаются по морфологии орбит и различной энергией):

    S - одна сферическая орбита в пределах каждого уровня; на ней может быть расположено не более 2 электронов с противоположными спинами (движущимися в противоположных направлениях;

    p - три «гантелеобразных» орбиты, ориентированные взаимно перпендикулярно; тоже до двух электронов на каждой, всего не более 6;

    d и f - более удалённые от ядра, морфологически более сложные; вместимость подуровня d - не более 10, f - не более 14 электронов.

    Легко запомнить, что количество орбит различных типов соответствует натуральному ряду чисел: 1, 3, 5, 7 …

    Число же электронов на каждой орбите можно определить умножением этого ряда на два (2, 6, 10, 14), так как на каждой из орбит могут одновременно находиться два электрона с противоположными спинами.

    Отсюда - заполняемость оболочек:

    Максимальной энергетической устойчивостью обладают внешние электронные оболочки с числом электронов 2 и 8.

    Ионизация - результат способности атома элемента принять или отдать определённое число электронов для достижения максимальной энергетической устойчивости внешней оболочки. Существуют положительные (катионы) и отрицательные (анионы) ионы. С зарядом ионов связано свойство валентности.

    Д.И. Менделеев открыл периодичность изменения химических свойств элементов в зависимости от их атомного веса (точнее, порядкового номера). При составлении Периодической таблицы выяснилось, что периодичность имеет более сложный характер, чем можно было бы предположить. Причина в том, что при увеличении порядкового номера элемента порядок заполняемости уровней и подуровней электронами не является линейно последовательным. элемент атом орбита электрон

    Чтобы разобраться как происходит заполнение электронных оболочек, удобно использовать формулы строения электронных оболочек химических элементов.

    Формула для водорода - 1 s1, т.е всего один электрон типа s на первом энергетическом уровне.

    Формула для элемента, завершающего первый ряд в системе Менделеева, будет иметь вид:

    2s1 - отвечает гелию.

    II период:

    Формула для конца второго ряда:

    2s1, 2s2 6p2 - неон.

    В его начале - элементы, отдающие электроны и образующие катионы (металлы). В конце - неметаллы. Эти элементы (азот, кислород, фтор) присоединяют электроны до заполнения внешнего уровня, образуя анионы. Между ними - углерод, способный как отдавать, так и принимать электроны (образует как кислородные соединения, так и с водородом, металлами).

    III период:

    Третий ряд также завершается благородным газом:

    2s1, 2s2 6p2, 2s3 6p3 - аргон.

    Здесь в третьем уровне остаётся незаполненным подуровень d, который может вместить 10 электронов. Но, так как на внешней оболочке расположено 8 электронов, т.е. устойчивое число (не по свойствам самого числа, в пифагорейском смысле, а в смысле наибольшей энергетической устойчивости такого количества электронов), то это - завершённый период.

    IV период:

    И, хотя остаётся незаполненным подуровень d третьего уровня, далее начинается заполнение четвёртого уровня. И следующим вновь оказывается очередной щелочной элемент - калий (2s1, 2s2 6p2, 2s3 6p3, 1s4)

    Но с третьего элемента этого периода - скандия - начинается заполнение того самого подуровня d, который остался пропущен. И потому далее два валентных электрона остаются на внешнем (четвёртом) уровне, а остальные продолжают заполнять третий (добавляется по одному, вплоть до никеля):

    2s1, 2s2 6p2, 2s3 6p3 8d3, 2s4

    Отсюда вытекают два следствия:

    Большую часть следующего периода составляют элементы, образующие катионы, т.е. имеющие свойства металлов (потому что из-за малого числа электронов на внешней оболочке их потеря энергетически выгоднее, чем присоединение).

    Широко распространена переменная валентность, так как, помимо потери двух электронов с внешнего уровня возможна и потеря части электронов, обычно одного, с подуровня d) .

    У меди, по сравнению с никелем, добавляется 1 электрон, но на заполнение подуровня d третьей оболочки переходят сразу 2 электрона, и она, таким образом, заполняется окончательно. А на внешней оболочке остаётся один электрон, и медь снова может быть одновалентна.

    2s1, 2s2 6p2, 2s3 6p3 10d3, 1s4

    При этом 18-электронная внешняя оболочка значительно менее энергетически выгодна, чем 8-электронная. Потому менее выгодно и отдавать этот единственный электрон с внешней оболочки. В результате, медь и её аналоги (серебро, золото) могут в природе существовать в самородном состоянии, не вступая в соединения с другими элементами. Причём химическая инертность среди них нарастает от меди к золоту.

    А завершается этот период элементом с электронной формулой:

    2s1, 2s2 6p2, 2s3 6p3 10d3, 2s4 8p4.

    Это опять инертный газ - криптон.

    Далее опять начинается с добавления одного, потом двух электронов на очередной (уже пятый) уровень (рубидий, стронций). А потом - заполнение d-подуровня предыдущего уровня. Всё аналогично IV периоду. В конце - очередной инертный газ (ксенон).

    2s1, 2s2 6p2, 2s3 6p3 10d3, 2s4 8p4 10d4 2s5 8p5.

    VI период:

    Начинается аналогично предыдущим периодам - щелочным и щелочноземельным элементами (цезий, барий). С третьего элемента - лантана - опять появляется первый электрон на подуровне d предыдущего уровня. Но ведь до сих пор внутри четвертого (уже позапредыдущего!) уровня остался не заполнен появляющийся здесь подуровень f. И после лантана начинается заполнение этого подуровня. Новые добавочные электроны оказываются глубоко внутри, далеко от внешнего уровня. Они практически не влияют на валентные свойства атомов, и вся большая группа следующих элементов занимает в таблице Менделеева одну клеточку с лантаном. Потом уже продолжается заполнение подуровня 5d, и так далее.

    VII период:

    В начале повторяет VI период. Можно предполагать, что в его рамках должно происходить заполнение ещё большего числа подуровней, и он должен оказаться ещё длиннее. Но, так как он не завершён из-за неустойчивости сверхтяжёлых элементов, это остаётся лишь предположением.

    С ростом атомного номера элемента закономерно изменяются не только химические свойства элементов, но и их размеры - атомные и ионные радиусы.

    Это особенно важно для геохимии, так как помимо валентных свойств химических элементов, процессы их миграции в существенной мере зависят от их размеров. В наибольшей мере, эти параметры влияют на явления изоморфизма - взаимозамещения атомов в химических соединениях (это явление Вам известно из курса общей геологии, а далее мы рассмотрим его несколько подробнее).

    Определение размеров атомов и ионов стало возможным благодаря появлению метода изучения кристаллических решеток и их параметров рентгеноструктурным методом (изучение структуры кристаллической решетки по характеру дифракции проходящих через неё рентгеновских лучей).

    Закономерности:

    Величины ионных радиусов колеблются от 0,46 ангстрем у водорода до 2,62 - у цезия.

    Значения ионных радиусов у элементарных анионов всегда превышают атомные, а у катионов являются меньшими.

    Величины атомных и ионных радиусов изменяются с периодичностью, соответствующей положению элементов в периодической системе Менделеева.

    Максимальные значения атомных радиусов характерны для элементов, с которых начинается заполнение очередного энергетического уровня электронных оболочек, т.е. начинающих периоды (щелочных элементов). Исключение - самый первый из них (литий), атомный радиус которого меньше, чем у гелия.

    В пределах каждого периода вначале наблюдается постепенное уменьшение атомных радиусов, затем сменяющееся их возрастанием.

    В пределах групп периодической системы наблюдается возрастание величин атомных радиусов от легких элементов к более тяжелым. Закономерность не распространяется на элементы тяжелее лантана из-за так называемого лантаноидного сжатия (обусловленной возрастанием силы внутриатомных связей в результате заполнения внутренних электронных оболочек).

    Обобщая все данные о распространённости химических элементов и их поведении в геохимических процессах, В.М. Гольдшмидт сформулировал основной закон геохимии:

    Одним из основных законов геохимии является закон Ферсмана-Гольдшмидта, который можно сформулировать следующим образом: Геохимия элемента в земной коре определяется как химическими свойствами, так и величиной кларка.

    Классификация Вернадского.

    Подразделение химических элементов по характеру их поведения в процессах миграции.

    Благородные газы - He, Ne, Ar, Kr, Xe. Соединения с другими атомами образуют исключительно редко, поэтому в природных химических процессах значительного участия не принимают.

    Благородные металлы - Ru, Rh, Pd, Os, Ir, Pt, Au. Соединения редки. Преимущественно присутствуют в форме сплавов, и образуются в основном в глубинных процессах (магматических, гидротермальных).

    Циклические элементы - H, B, C, N, O, F, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Ag, Cd, Ba, (Be, Cr, Ge, Zr, Sn, Sb, Te, Hf, W, Re, Hg, Tl, Pb, Bi). Наиболее многочисленная группа и преобладающая по массе. Для каждого элемента характерен определённый круг химических соединений, возникающих и распадающихся в ходе природных процессов. Таким образом, каждый элемент проходит цепочку превращений, в конечном счёте возвращаясь к исходной форме нахождения - и далее. Циклы не являются полностью обратимыми, так как часть элементов постоянно выходит из круговорота (и часть так же снова в него вовлекается).

    Рассеянные элементы - Li, Sc, Ga, Br, Rb, Y, Nb, In, J, Cs, Ta. Безусловно, господствуют рассеянные атомы, не образующие химических соединений. Незначительная доля может участвовать в образовании самостоятельных минеральных соединений (большинство - в глубинных процессах, а J и Br - в гипергенных).

    Редкоземельные элементы - La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tu, Yb, Lu. Тяготеют к рассеянным. Основная черта - совместная миграция.

    Радиоактивные элементы - Po, Rn, Ra, Ac, Th, Pa, U. Основная специфика в том, что в геохимическом процессе происходит постоянное превращение одних элементов в другие, что делает процессы их химической миграции наиболее сложными.

    Элементы условности данной классификации:

    наличие химических элементов, занимающих промежуточное положение между группами, т.е. способных вести себя в миграционных процессах двояко; в этих случаях для отнесения такого элемента к одной из двух возможных групп «решающим аргументом будет история главной по весу части атомов или наиболее яркие черты их геохимической истории» (наличие доли субъективизма в таком критерии очевидно).

    выделение в особую группу радиоактивных элементов не учитывает разной устойчивости изотопов; у ряда элементов существенной является доля как стабильных, так и нестабильных изотопов, и, естественно, геохимическая история соответствующих долей общего числа атомов данного элемента будет различной (K, Rb, Sm, Re и др.). Сейчас, в связи с процессами радиогенного загрязнения, необходимо учитывать и миграцию искусственных радиоактивных изотопов.

    Классификация Гольдшмидта.

    Наиболее широко применяемая классификация. Элементы сгруппированы на основе их способности формировать естественные ассоциации в природных процессах. Это определяется рядом факторов:

    Строение электронных оболочек, обуславливающее химические свойства элементов.

    Положение элементов на кривой атомных объёмов.

    Химическое «сродство» к тем или иным конкретным элементам, т.е. преимущественная склонность именно с этими определёнными элементами образовывать соединения (может измеряться значениями энергии образования определённых типов их соединений, например, оксидных).

    Элементы подразделены на 5 групп:

    Литофильные - Li, Be, B, O, F, Na, Mg, Al, Si, P, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Br, Rb, Sr, Y, Zr, Nb, I, Cs, Ba, TR, Hf, Ta, W, At, Fr, Ra, Ac, Th, Pa, U. Включены кислород и галогены, а также ассоциирующие с ними элементы, то есть преимущественно образующие кислородные и галоидные соединения. Последние - это те, которые расположены на пиках и нисходящих участках кривых атомных объёмов, а также имеют максимальные величины энергии образования оксидных соединений.

    Халькофильные (или тиофильные, «любящие» серу) - S, Cu, Zn, Ga, Ge, As, Se, Ag, Cd, In, Sn, Sb, Te, Au, Hg, Tl, Pb, Bi, Po). Те, которые ассоциируют преимущественно с медью и серой. Это - сера и её аналоги (селен, теллур), а также элементы, преимущественно склонные образовывать не оксидные, а сульфидные соединения. Для последних характерны 18-электронные внешние оболочки катионов, расположение на восходящих участках кривых атомных объёмов. Величины энергии образования кислородных соединений низкие. Некоторые способны существовать в самородном виде.

    Сидерофильные - Fe, Co, Ni, Mo, Ru, Rh, Pd, Re, Os, Ir, Pt. Ассоциируют с железом. Все принадлежат к элементам с достраивающимися d-оболочками. Занимают промежуточное положение между лито- и халькофильными: минимумы на кривой атомных объёмов, промежуточные значения энергии образования кислородных соединений. В равной мере распространены и в оксидных, и в сульфидных ассоциациях.

    Атмофильные - все инертные газы, N, H. Все являются газами, свойственно по преимуществу атомарное или молекулярное (вне соединений) состояние (видимость того, что Н представляет исключение, связана с тем, что атомарный водород теряется, рассеиваясь в космическом пространстве).

    Неправомерным является дополнение этой классификации группой биофильных элементов.