Коллега, по представлениям классической физики, движение частиц и распространение волн различаются принципиально. Многие наблюдали это различие между полётом камня по определённой траектории и распространением волн по поверхности воды, при падении этого камня в воду.

Это, мой друг, в макромире. Но в микромире эти различия, как-бы, «размываются».

К примеру, ещё Гюйгенс (1629-1695), затем Юнг (1773-1829) и Френель (1788-1827) доказали, что свет имеет волновую природу. Это проявляется в явлениях, поляризации, преломления, интерференции и дифракции света.

Однако, исследуя в 1900 году законы теплового излучения, Планк (1858-1947) обнаружил «световые порции» – кванты электромагнитного поля. Эти кванты – фотоны – во многом похожи на частицы (корпускулы): они обладают определённой энергией и импульсом, взаимодействуют с веществом как целое. Более поздние опыты по вырыванию светом электронов с поверхности металлов (фотоэффект) и рассеянию света на электронах (Комптона эффект) показали, что свет ведёт себя подобно потоку частиц.

С другой стороны, оказалось, что падающие на кристалл электроны, которые изначально воспринимались, как частицы, дают дифракционную картину, которую нельзя понять иначе, как на основе волновых представлений. Позже было установлено, что это явление свойственно вообще всем микрочастицам.

В 1924 Бройль (1892-1968) выступил с поразительной по смелости гипотезой о том, что корпускулярно-волновой дуализм присущ всем без исключения видам материи – электронам, протонам, атомам и т.д., причём количественные соотношения между волновыми и корпускулярными свойствами частиц те же, что и установленные ранее для фотонов. А именно, если частица имеет энергию W и импульс p , то с ней связана волна, частота которой ν = W/h и длина волны λ = h/p , где h – постоянная Планка. Эти волны получили название «волны де Бройля».

Таким образом, характерной особенностью микромира является своеобразная двойственность, дуализм корпускулярных и волновых свойств, который не может быть понят в рамках классической физики.

Квантовая механика устранила абсолютную грань между волной и частицей. Ведь каждая волна состоит из полуволн, которые мы называем пучностями (расположены между двумя узлами, см. рис.):

Пучности во многом похожи на частицы (корпускулы). Ведь они, так же как и фотоны, обладают определённой энергией и импульсом, чётко ограничены в пространстве (длина волны) и во времени (период волны).

При этом (очень важно!), если мы по горизонтальной оси будем откладывать длину волны (в метрах), а по вертикальной – её импульс (кг*м/с), то величина площади пучности будет равна постоянной Планка (Дж*с). Такое же значение будет иметь площадь пучности, если мы по вертикали будем откладывать энергию волны (Дж), а по горизонтали – её период (в секундах). Именно поэтому мы называем эти пучности квантами (порциями) энергии и импульса (следовательно, и массы).

Вывод : фотон, электрон, протон, нейтрон… являются лишь полуволнами колебаний той среды, в которой распространяется волна. В свою очередь полуволну можно рассматривать, как корпускулу, имеющую конкретный размер (длина полуволны), энергию, импульс и массу (для электрона и протона – ещё и электрический заряд) .

Дополнение :

Однако электромагнитные волны распространяются не в плоскости, а в трёхмерном объёме. При этом поперечность этих волн выражается в том, что колеблющиеся в них векторы напряжённости электрического и магнитного полей перпендикулярны направлению распространения волны. Кроме того, эти векторы почти всегда взаимно перпендикулярны, поэтому для описания электромагнитной волны требуется знать поведение лишь одного из них. Обычно для этой цели выбирают вектор Е.

На рисунке показаны колебания проекций электрического вектора Е на взаимно перпендикулярные оси X и Y (Z - направление распространения волны) и огибающая концов полного вектора Е в разных точках волны для случая, когда вертикальные (по оси X) колебания на четверть периода (90°) опережают горизонтальные (по оси Y). Конец вектора Е в этом случае описывает окружность в направлении «правого винта».

Практически мы получили цилиндрическую пружину, которую можно рассматривать как устройство, накапливающее потенциальную энергию. Однако, в потенциальном поле атома электромагнитная волна распространяется не линейно (вдоль оси Z), а по замкнутой кривой. Значит, нашу пружину необходимо свернуть в кольцо так, чтобы её основания совместились друг с другом. Получим тор (проще бублик), центр которого совпадает с центром потенциального поля.

Электромагнитная волна в замкнутом пространстве атома представляет собой стоячую волну, которая распространяется вдоль оси тора (свёрнутая нами в кольцо ось Z) с орбитальной скоростью, равной корню квадратному из модуля гравитационного потенциала (v 2 , Дж/кг) на данной траектории, а конец вектора Е описывает винтовую окружность вдоль витков пружины.

Для справки :

Поляризация света , одно из фундаментальных свойств оптического излучения (света), состоящее в неравноправии векторов напряжённости в плоскости, перпендикулярной световому лучу (направлению распространения световой волны).

Преломление света , изменение направления распространения оптического излучения (света) при его прохождении через границу раздела двух сред.

Интерференция волн , сложение в пространстве двух (или нескольких) волн, при котором в разных точках получается усиление или ослабление амплитуды результирующей волны.

Дифракция (от лат. diffractus – разломанный) волн , явление, связанное с отклонением волн при их прохождении мимо края препятствия. В соответствии с принципом Гюйгенса – Френеля это препятствие является источником вторичных волн, от которого распространяется сферическая волна, попадая в область геометрической тени.

Квант света (нем. quant, от лат. quantum – сколько), количество (порция) электромагнитного излучения, которое в единичном акте способен излучить или поглотить атом или другая квантовая система; элементарная частица, то же, что фотон.

Планка постоянная , квант действия, фундаментальная физическая постоянная, определяющая широкий круг физических явлений, для которых существенна дискретность действия.

Квантовая механика – волновая механика, теория устанавливающая способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем, а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми в макроскопических опытах.

  • 8. Ннтерференционные приборы и их применение.
  • 9. Принцип Гюйгенса-Френеля.
  • 10. Метод зон Френеля.
  • 11. Явление дифракции. Дифракция Френеля на круглом отверстии.
  • Дифракция френеля на круглых отверстиях
  • 12. Явление дифракции. Дифракция Френеля на непрозрачном диске.
  • 14. Дифракционная решетка. Главные и дополнительные максимумы и минимумы.
  • 15. Расчет формулы дифракционной решетки
  • 16. Применение дифракционной решетки. Разрешающая способность.
  • Применение явлений д-ии света
  • 17. Дифракция рентгеновских лучей.
  • 18 .Основы голограмм.
  • 19. Дисперсия света.
  • 33. Квантовая теория Планка. Формула Планка.
  • 20. Электронная теория дисперсии света.
  • 21. Поглощение света. Закон Бугера.
  • В прозрачных изотропных средах и в кристаллах куб. Системы может возникать двойной луч преломления под влиянием внеш. Воздейс–й, в частности это происходит при мех. Дифор. Тв. Тел.
  • 27. Вращение плоскости поляризации. Эффект Фарадея.
  • 28. Тепловое излучение и его характеристики.
  • 29. Закон Кирхгофа для равновесного излучения.
  • 30 Абсолютно черное тело. Закон Стефана-Больцмана.
  • 72. Ядерные реакции и законы сохранения.
  • 31. Абсолютно черное тело. Закон смещения Вина.
  • 32. Абсолютно черное тело. Формула Релея-Джинса.
  • 34. Внешний фотоэффект и его законы.
  • 35. Уравнение Эйнштейна для внешнего фотоэффекта.
  • 36. Модель атома Резерфорда и ее недостатки.
  • 37. Закономерности в спектре излучения атома водорода.
  • 38. Постулаты Бора. Модель атома Бора.
  • 39. Корпускулярно-волновой дуализм свойств вещества.
  • 44. Уравнение Шредингера для стационарных состояний.
  • 40. Волны де Бройля и их свойства.
  • 41. Соотношение неопределенности Гейзенберга.
  • 42. Волновая функция и её статический смысл.
  • 43. Общее уравнение Шредингера нерелятивистской квантовой механики
  • 45. Прохождение частицы через потенциальный барьер.
  • 46. Решение уравнения Шредингера для водородоподобных атомов
  • 47. Квантовые числа, их физический смысл.
  • 49. Спин электрон. Спиновое квантовое число.
  • 48. Пространственное распределение электрона в атоме водорода.
  • 50. Принцип Паули. Распределение электронов в атоме по состояниям.
  • 55. Спонтанное и вынужденное излучение фотонов.
  • 51. Периодическая система Менделеева.
  • 52. Рентгеновские спектры. Природа сплошного и характеристического рентгеновских спектров.
  • 73. Реакция деления ядер.
  • 53. Физическая природа химической связи в молекулах. Понятие об энергетических уровнях.
  • 54. Колебательные и вращательные спектры молекул.
  • 56. Принцип работы квантового генератора.
  • 57. Твердотельные и газоразрядные лазеры. Их применение.
  • 58. Фононы. Теплоемкость кристаллической решетки.
  • 59. Элементы зонной теории в кристаллах.
  • 60. Энергетические зоны в кристаллах. Валентная и зона проводимости.
  • 61. Заполнение зон: диэлектрики, проводники, полупроводники по зонной теории.
  • 63. Основы квантовой теории электропроводимости металла. Сверхпроводимость.
  • 66. Электронные и дырочные полупроводники.
  • 62. Понятие о квантовой статистике Ферми-Дирака. Уровень Ферми.
  • 64. Собственная проводимость полупроводников.
  • 65. Примесная проводимость полупроводников.
  • 67. Контакт электронного и дырочного полупроводников …
  • 68. Строение атомных ядер. Массовое и зарядовые числа. Нуклоны.
  • 69. Взаимодействие нуклонов. Свойства и природа ядерных сил.
  • 71. Правила смещения. Α-распад. Взаимопревращения …
  • 70. Естественная радиоактивность. Закон радиоактивного распада.
  • 75. Термоядерная реакция и проблемы её управления.
  • 76. Элементарные частицы. Космическое излучение. …
  • 74. Цепная реакция деления ядер. Ядерный реактор.
  • 39. Корпускулярно-волновой дуализм свойств вещества.

    Корпускулярно-волновой дуализм свойств ЭМ излучения. Это означает, что природу света можно рассматривать с двух сторон: с одной стороны это волна, свойства которой проявляются в закономерностях распространения света, интерференции, дифракции, поляризации. С другой стороны свет - это поток частиц, обладающие энергией, импульсом. Корпускулярные свойства света проявляются в процессах взаимодействия света с веществом (фотоэффект, эффект Комптона).

    Анализируя можно понять, что чем больше длина волны l, тем меньше энергия (из Е= hс/l), тем меньше импульс, тем труднее обнаруживаются квантовые свойства света.

    Чем меньше l => больше энергия Е фотона, тем труднее обнаруживаются волновые свойства света.

    Взаимосвязь между двойственными корпускулярно-волновыми свойствами света можно объяснить, если использовать статистический подход к рассмотрению закономерностей распределения света.

    Например, дифракция света на щели: при прохождении света через щель происходит перераспределение фотонов в пространстве. Так как вероятность попадания фотона в различные точки экрана неодинаковая, то возникает дифракционная картина. Освещенность экрана (количество фотонов на него падающих) пропорциональна вероятности попадания фотона в эту точку. С другой стороны освещенность экрана пропорциональна квадрату амплитуды волны I~E 2 . Поэтому квадрат амплитуды световой волны в данной точке пространства является мерой вероятности попадания фотона в эту точку пространства.

    44. Уравнение Шредингера для стационарных состояний.

    Уравнение (217.5) называется уравнением Шредингера для стационарных состояний. В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями  Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собственными. Решения же, которые соответствуют собственным значениям энергии, называются собственными функциями. Собственные значения Е могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором - о дискретном спектре.

    40. Волны де Бройля и их свойства.

    Де Бройль утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду с корпускулярными обладают так­же волновыми свойствами. Итак, согласно де Бройлю, с каждым микрообъектом связываются, с одной стороны, корпускулярные характеристики - энергия Е и импульс р, а с другой - волновые характеристики - частота v и длина волны К. Количественные соотношения, связывающие корпускулярные и волновые свойства частиц, такие же, как для фотонов: E = hv , p = h / . (213.1) Смелость гипотезы де Бройля заключалась именно в том, что соотношение (213.1) постулировалось не только для фотонов, но и для других микрочастиц, в частности для таких, которые обладают массой покоя. Таким образом, любой частице, обладающей импульсом, сопоставляют волновой процесс с длиной волны, определяемой по формуле де Бройля: = h / p . (213.2) Это соотношение справедливо для любой частицы с импульсом р. Вскоре гипотеза де Бройля была подтверждена экспериментально. (К. Дэвиссон, Л. Джермер) обнаружили, что пучок электронов, рассеивающийся от естественной дифракционной решетки - кристалла никеля, - дает отчетливую дифракционную картину. Дифракционные максимумы соответствовали формуле Вульфа - Брэггов (182.1), а брэгговская длина волны оказалась в точности равной длине волны, вычисленной по формуле (213.2). В дальнейшем формула де Бройля была подтверждена опытами П. С. Тартаковского и Г. Томсона, наблюдавших дифракционную картину при прохождении пучка быстрых электронов (энергия 50 кэВ) через металлическую фольгу (толщиной 1 мкм). Так как дифракционная картина исследовалась для потока электронов, то необходимо было доказать, что волновые свойства присущи не только потоку большой совокупности электронов, но и каждому электрону в отдельности. Это удалось экспериментально подтвердить в 1948 г. советскому физику В. А. Фабриканту (р. 1907). Он показал, что даже в случае столь слабого электронного пучка, когда каждый электрон проходит через прибор независимо от других (промежуток времени между двумя электронами в 10 4 раз больше времени прохождения электроном прибора), возникающая при длительной экспозиции дифракционная картина не отличается от дифракционных картин, получаемых при короткой экспозиции для потоков электронов, в десятки миллионов раз более интенсивных. Следовательно, волновые свойства частиц не являются свойством их коллектива, а присущи каждой частице в отдельности. Впоследствии дифракционные явления обнаружили также для нейтронов, протонов, атомных и молекулярных пучков. Экспериментальное доказательство наличия волновых свойств микрочастиц привело к выводу о том, что перед нами универсальное явление, общее свойство материи. Но тогда волновые свойства до­лжны быть присущи и макроскопическим телам. Почему же они не обнаружены экспериментально? Например, частице массой 1 г, движущейся со скоростью 1 м/с, соответствует волна де Бройля с =6,62 10 -31 м. Такая длина волны лежит за пределами доступной наблюдению области (периодических структур с периодом d10 -31 м не существует). Поэтому считается, что макроскопические тела проявляют только одну сторону своих свойств - корпускулярную - и не проявляют волновую. Представление о двойственной корпускулярно-волновой природе частиц вещества углубляется еще тем, что на частицы вещества переносится связь между полной энергией частицы г и частотой v волн де Бройля: e=hv. (213.3) Это свидетельствует о том, что соотношение между энергией и частотой в формуле (213.3) имеет характер универсального соотношения, справедливого как для фотонов, так и для любых других микрочастиц. Справедливость же соотношения (213.3) вытекает из согласия с опытом тех теоретических результатов, которые получены с его помощью в квантовой механике, атомной и ядерной физике. Подтвержденная экспериментально гипотеза де Бройля о корпускулярно-волновом дуализме свойств вещества коренным образом изменила представления о свойствах микрообъектов. Всем микро­объектам присущи и корпускулярные, и волновые свойства; в то же время любую из микрочастиц нельзя считать ни частицей, ни волной в классическом понимании. Современная трактовка корпускулярно-волнового дуализма может быть выражена словами советского физика-теоретика В. А. Фока (1898-1974): «Можно сказать, что для атомного объекта существует потенциальная возможность проявлять себя, в зависимости от внешних условий, либо как волна, либо как частица, либо промежуточным образом. Именно в этой потенциальной возможности различных проявлений свойств, присущих микрообъекту, и состоит дуализм волна - частица. Всякое иное, более буквальное, понимание этого дуализма в виде какой-нибудь модели неправильно».

    Свет долгое время оставался одним из главных объектов изучения. Многие учёные стремились познать его природу, но сделать это было сложно из-за ограниченных возможностей. Самой первой теорией, пытавшейся объяснить природу света, была волновая теория. Она долгое время считалась правильной и верной, и не было никаких предпосылок, чтобы сформировался корпускулярно-волновой дуализм. В то время в физике бытовало мнение, что свет по своей природе - волна, а атомы и другие мелкие частицы обладали только корпускулярными свойствами.

    Теория начинала рушиться, потому что не удавалось объяснить Резерфорд в результате своих опытов сделал предположение, что ядро атома находится в центре, там же сосредоточена основная масса, а электроны распределяются по всему объему, свободно заполняя пространство. Но теория не нашла подтверждения, потому что согласно расчётам, подобная система не могла быть устойчивой.

    Предпосылки формирования новой теории

    Позже было открыто явление фотоэффекта, который выходил за рамки классической физики, которая главенствовала в то время. Впоследствии именно фотоэффект помог сформировать корпускулярно-волновой дуализм, потому что это привело к необходимости создания Её особенностью стало то, что частицы получали свойства, которые были невозможны бы, если рассматривать их в свете принципов физики классической. Корпускулярно-волновой дуализм стал одной из первых теорий, изучаемых в новом

    Суть фотоэффекта заключалась в том, что обычные вещества под воздействием коротковолнового излучения испускают быстрые электроны. Главным расхождением с классической физикой стал тот факт, что энергия испускаемых быстрых электронов не зависела от интенсивности излучения. Значения имело только свойства самого вещества, а также частота излучения. На тот момент не удавалось объяснить механизмы высвобождения фотоэлектронов на основе имеющихся данных.

    Волновая теория представлялась стройной и неоспоримой. Согласно ей, энергия излучения равномерно распространялась в световой волне. Когда она попадает на электрон, она сообщает ему определённое количество энергии, соответственно, согласно этой теории, чем выше интенсивность, тем больше энергия. Однако на деле выходило всё несколько иначе.

    Развитие идеи дуализма

    Альберт Эйнштейн начал высказывать идеи о дискретной природе света. Также начали развиваться квантовая теория поля и концепции квантовых полей, которые помогли сформировать корпускулярно-волновой дуализм.

    Суть заключается в том, что на свет могут воздействовать следовательно, он имеет физические свойства потока частиц - фотонов. Но при этом в таких явлениях, как дифракция и демонстрирует явные свойства волны. Был проведён ряд опытов, доказывающих двойственность структуры света. Именно на их основе был построен корпускулярно-волновой дуализм света, т.е. фотон проявляет корпускулярные свойства, но в ряде экспериментов он имел чёткие проявление волновых свойств.

    Нужно понимать, что подобные идеи на данный момент представляют лишь исторический интерес. Корпускулярно-волновой дуализм свойств вещества сформировался как теория в период, когда изучение подобных свойств только начиналось, тогда же были фактически основаны новые разделы физики. Подобная теория была попыткой объяснить новые явления языком классической физики.

    На самом деле, с точки зрения квантовой физики подобные объекты не являются частицами, по крайне мере, в классическом понимании. Они приобретают определённые свойства лишь при приближении. Впрочем, теория дуализма по-прежнему используется для объяснения определённых принципов природы света.

    Если вы полагали, что мы канули в лету со своими мозговыворачивающими темами, то спешим вас огорчить обрадовать: вы заблуждались! На самом деле все это время мы пытались найти приемлемую методику изложения безумных тем связанных с квантовыми парадоксами. Мы написали несколько вариантов черновиков, но все они были выброшены на мороз. Потому что когда речь заходит об объяснении квантовых приколов, то мы и сами путаемся и признаем, что многое не понимаем (да и вообще мало кто понимает в этом деле, включая крутых мировых ученых). Увы, квантовый мир настолько чужд обывательскому мировоззрению, что совсем не стыдно признаться в своем непонимании и пытаться понемножку вместе разобраться хотя бы в основах.

    И хотя мы, как обычно, постараемся рассказывать предельно доступно с картинками из гугла, неискушенному читателю потребуется некоторая начальная подготовка, поэтому рекомендуем просмотреть наши предыдущие темы, особенно про кванты и материю.
    Специально для гуманитариев и прочих интересующихся - квантовые парадоксы. Часть 1.

    В этой теме мы поговорим о самой обыденной загадке квантового мира - корпускулярно-волновом дуализме. Когда мы говорим "самая обыденная" мы имеем в виду, что физикам она уже приелась настолько, что как будто бы и не кажется загадкой. Но это все потому, что остальные квантовые парадоксы обывательскому уму принять еще сложнее.

    А дело было так. В старые добрые времена где-то в середине 17-го века Ньютон и Гюйгенс разошлись во мнении, что есть свет: Ньютон без зазрения совести заявил, что свет это поток частиц, а старина Гюйгенс пытался доказать, что свет это волна. Но Ньютон был авторитетнее, поэтому его заявление о природе света было принято как истинное, а над Гюйгенсом посмеялись. И двести лет свет считали потоком каких-то неведомых частиц, природу которых однажды надеялись открыть.

    В начале 19 века один востоковед по имени Томас Юнг баловался с оптическими приборами - в итоге он взял и провел эксперимент, который сейчас называют опытом Юнга, и каждый физик считает этот опыт священным.




    Томас Юнг всего лишь направил луч (одного цвета, чтобы частота была примерно одинакова) света через две прорези в пластине, а позади поставил еще одну пластину-экран. И показал результат своим коллегам. Если бы свет был потоком частиц, то мы бы увидели на заднем фоне две светлые полосы.
    Но, к несчастью всего научного мира, на экране-пластине появилась череда темных и светлых полос. Обычное явление, которое называется интерференцией - наложение двух (и более волн) друг на друга.

    Кстати, именно благодаря интерференции мы наблюдаем радужные переливы на пятне масла или на мыльном пузыре.




    Иначе говоря, Томас Юнг экспериментально доказал, что свет это волны. Ученый мир долго не хотел верить Юнгу, и одно время его так закритиковали, что тот даже отказался от своих идей волновой теории. Но уверенность в своей правоте все-таки победила, и ученые стали считать свет волной. Правда, волной чего - это было загадкой.
    Вот, на рисунке старый добрый опыт Юнга.



    Надо сказать, волновая природа света не сильно повлияла на классическую физику. Ученые переписали формулы и стали полагать, что скоро весь мир падет к их ногам под единой универсальной формулой всего.
    Но вы уже догадались, что Эйнштейн как всегда все испортил. Беда подкралась с другой стороны - сначала ученые заморочились расчетом энергии тепловых волн и открыли понятие квантов (обязательно почитайте об этом нашу соответствующую тему " "). А затем с помощью этих самых квантов Эйнштейн нанес удар по физике, объяснив явление фотоэффекта.

    Вкратце: фотоэффект (одно из следствий которого является засвечивание пленки) это выбивание светом электронов с поверхности некоторых материалов. Технически это выбивание происходит так, словно свет это частица. Частичку света Эйнштейн назвал квантом света, а позже ей присвоили имя - фотон.

    В 1920 году к антиволновой теории света добавился удивительный эффект Комптона: когда электрон обстреливают фотонами, то фотон отскакивает от электрона с потерей энергии ("стреляем" синим цветом, а отлетает уже красный), как биллиардный шар от другого. Комптон за это отхватил нобелевскую премию.



    На этот раз физики поостереглись вот так вот запросто отказываться от волновой природы света, а вместо этого крепко задумались. Наука встала перед ужасающей загадкой: так все-таки свет это волна или частица?

    У света, как и у любой волны, есть частота - и это легко проверить. Мы видим разные цвета, потому что каждый цвет это просто разные частоты электромагнитной (световой) волны: красный - маленькая частота, фиолетовый - большая частота.
    Но удивительно: длина волны видимого света в пять тысяч раз больше размера атома - как такая "штука" влезает в атом, когда атом поглощает эту волну? Если только фотон это частица, сопоставимая по размерам с атомом. Фотон одновременно и большой и маленький?

    К тому же фотоэффект и эффект Комптона однозначно доказывают, что свет это все-таки поток частиц: нельзя объяснить каким образом волна передает энергию локализованным в пространстве электронам - если бы свет был волной, то некоторые электроны были бы выбиты позднее, чем другие, и явление фотоэффекта мы бы не наблюдали. Но в случае потока отдельно взятый фотон сталкивается с отдельно взятым электроном и при некоторых условиях выбивает его из атома.




    В итоге было решено: свет это одновременно и волна и частица. Вернее, и ни то и ни другое, а новая неизвестная ранее форма существования материи: наблюдаемые нами явления это всего лишь проекции или тени реального положения дел, в зависимости от того как смотреть на происходящее. Когда мы смотрим на тень цилиндра, освещенного с одной стороны, то видим круг, а при освещении с другой стороны - тень прямоугольная. Так и с корпускулярно-волновым представлением света.

    Но и тут все непросто. Нельзя говорить, что мы считаем свет либо волной, либо потоком частиц. Посмотрите в окно. Внезапно даже в чисто вымытом стекле мы видим свое, пусть нечеткое, но отражение. В чем подвох? Если свет - это волна, то объяснить отражение в окне просто - подобные эффекты мы видим на воде, когда волна отражается от препятствия. Но если свет - это поток частиц, то объяснить отражение так просто не получится. Ведь все фотоны одинаковы. Однако если все они одинаковы, то и преграда в виде оконного стекла должна одинаково на них воздействовать. Либо все они проходят сквозь стекло, либо все — отражаются. А в суровой реальности часть фотонов пролетает через стекло, и мы видим соседний дом и тут же наблюдаем свое отражение.

    И единственное объяснение, которое приходит в голову: фотоны сами себе на уме. Нельзя со стопроцентной вероятностью предсказать, как поведет себя конкретный фотон - столкнется со стеклом как частица или как волна. Это основа квантовой физики - совершенно, абсолютно случайное поведение материи на микроуровне без какой-либо причины (а в своем мире больших величин мы по опыту знаем, что все имеет причину). Это идеальный генератор случайных чисел в отличие от подбрасываемой монетки.

    Гениальный Эйнштейн, открывший фотон, до конца жизни был уверен, что квантовая физика ошибается, и уверял всех, что "Бог не играет в кости". Но современная наука все более подтверждает: таки играет.



    Так или иначе, но как-то раз ученые решили поставить жирную точку в споре "волна или частица" и воспроизвести опыт Юнга с учетом технологий XX века. К этому времени они научились пулять фотонами по одному (квантовые генераторы, известные среди населения под именем "лазеры"), и посему было задумано проверить, что будет на экране в случае, если выстрелить по двум щелям одной частицей: вот и станет понятно, наконец, чем же является материя при контролируемых условиях эксперимента.

    И внезапно - одиночный квант света (фотон) показал интерференционную картинку, то есть частица пролетала через обе щели одновременно, фотон интерферировал сам с собой (если говорить ученым языком). Уточним технический момент - на самом деле интерференционную картинку показал не один фотон, а серия выстрелов по одной частице с интервалами в 10 секунд - со временем на экране проявились юнговские полосы, знакомые любому троечнику с 1801-го года.

    С точки зрения волны это логично - волна проходит через щели, и теперь две новые волны расходятся концентрическими кругами, накладываясь друг на друга.
    Но с корпускулярной точки зрения получается, что фотон находится в двух местах одновременно, когда проходит через щели, а после прохождения смешивается сам с собой. Это вообще нормально, а?
    Оказалось, что нормально. Более того раз фотон находится сразу в двух щелях, значит он одновременно находится везде и до щелей и после пролета через них. И вообще с точки зрения квантовой физики выпущенный фотон между стартом и финишем находится одновременно "везде и сразу". Такое нахождение частицы "сразу везде" физики называют суперпозицией - страшное слово, которое раньше было математическим баловством, теперь стало физической реальностью.

    Некий Э. Шредингер, известный противник квантовой физики, к этому времени нарыл где-то формулу, которая описывала волновые свойства материи, типа воды. И немного над ней поколдовав, к своему же ужасу вывел так называемую волновую функцию. Эта функция показывала вероятность нахождения фотона в определенном месте. Заметьте, именно вероятность, а не точное местонахождение. И эта вероятность зависела от квадрата высоты гребня квантовой волны в заданном месте (если кому-то интересны детали).

    Вопросам измерения местонахождения частиц мы посвятим отдельную главу.




    Дальнейшие открытия показали, что дела с дуализмом еще хуже и загадочнее.
    В 1924 году некий Луи де Бройль взял и заявил, что корпускулярно-волновые свойства света это верхушка айсберга. А таким непонятным свойством обладают все элементарные частицы.
    То есть частицей и волной одновременно являются не только частицы электромагнитного поля (фотоны), но и вещественные частицы типа электронов, протонов и т.п. Вся материя вокруг нас на микроскопическом уровне является волнами (и частицами одновременно).

    И спустя пару лет это даже подтвердили экспериментально - американцы гоняли электроны в электронно-лучевых трубках (которые известны нынешним старперам под названием "кинескоп") - так вот наблюдения, связанные с отражением электронов, подтвердили, что электрон это тоже волна (для простоты понимания можно сказать, что на пути электрона поставили пластинку с двумя щелями и лицезрели интерференцию электрона как она есть).

    К настоящему времени в опытах обнаружено, что и атомы имеют волновые свойства и даже некоторые специальные виды молекул (так называемые "фуллерены") проявляют себя как волна.




    Пытливый ум читателя, который еще не ошалел от нашего повествования, спросит: если материя это волна, то почему, например, летящий мячик не размазан в пространстве в виде волны? Почему реактивный самолет никак не походит на волну, а очень похож на реактивный самолет?

    Де Бройль, чертяка, и тут все объяснил: таки-да, летящий мячик или "боинг" это тоже волна, но длина этой волны тем меньше, чем больше импульс. Импульс это масса, умноженная на скорость. То есть, чем больше масса материи, тем меньше длина ее волны. Длина волны мяча летящего со скоростью 150 км/час будет приблизительна равна 0,00метра. Поэтому мы не в состоянии заметить, как мячик размазан по пространству в качестве волны. Для нас это твердая материя.
    Электрон же весьма легкая частица и, летящий со скоростью 6000 км/сек, он будет иметь заметную длину волны в 0,0000000001 метра.

    Кстати, сразу ответим на вопрос, почему ядро атома не настолько "волновое". Хоть оно и находится в центре атома, вокруг которого, ошалев, летает и в то же время размазывается электрон, оно имеет приличный импульс, связанный с массой протонов и нейтронов, а также высокочастотным колебанием (скорость) из-за существования внутри ядра постоянного обмена частицами сильного взаимодействия (читайте тему ). Поэтому ядро больше походит на привычную нам твердую материю. Электрон же, по-видимому, является единственной частицей с массой, у которой ярко выражены волновые свойства, вот его все с восторгом и изучают.




    Вернемся к нашим частицам. Так что получается: электрон, вращающийся вокруг атома это одновременно и частица и волна. То есть вращается-то частица, и в то же время электрон как волна представляет собой оболочку определенной формы вокруг ядра - как это вообще можно понять человеческим мозгом?

    Выше мы уже подсчитали, что летающий электрон имеет довольно огромную (для микромира) длину волны и чтобы разместиться вокруг ядра атома такой волне нужно неприлично много места. Вот как раз именно этим и объясняются такие большие размеры атомов по сравнению с ядром. Длины волн электрона определяют размер атома. Пустое место между ядром и поверхностью атома заполнено "размещением" длины волны (и в то же время частицы) электрона. Это очень грубое и некорректное объяснение - просим нас простить - на самом деле все гораздо сложнее, но наша цель - хотя бы позволить отгрызть кусочек гранита науки людям, которым все это интересно.

    Давайте еще раз проясним! После некоторых комментариев к статье [на ЯПе] мы поняли, какого важного замечания не хватает этой статье. Внимание! Описываемая нами форма материи не является ни волной ни частицей. Она лишь (одновременно) имеет свойства волны и свойства частиц. Нельзя говорить, что электромагнитная волна или электронная волна подобны морским или звуковым волнам. Привычные нам волны представляют собой распространение возмущений в пространстве заполненным каким-либо веществом.
    Фотоны, электроны и прочие экземпляры микромира при движении в пространстве можно описать волновыми уравнениями, они по поведению лишь ПОХОЖИ на волну, но ни в коем случае волной не являются. Аналогично и с корпускулярной строной материи: поведение частицы похоже на полет маленьких точечных шариков, но это ни разу не шарики.
    Это нужно понять и принять, иначе все наши размышления будут в конечном счете приводить к поиску аналогов в макромире и тем самым пониманию квантовой физики придет конец, и начнется фричество или шарлатанская философия навроде квантовой магии и материальности мыслей.




    Остальные ужасающие выводы и следствия из модернизированного опыта Юнга мы рассмотрим позже в следующей части - неопределенность Гейзенберга, кошка Шредингера, принцип запрета Паули и квантовая запутанность ждут терпеливого и вдумчивого читателя, который еще не раз перечитает наши статьи и покопается в интернете в поисках дополнительной информации.

    Всем спасибо за внимание. Приятной всем бессонницы или познавательных кошмаров!

    NB: Прилежно напоминаем, что все изображения взяты из гугла (поиск по картинкам) - авторство определяется там же.
    Незаконное копирование текста преследуется, пресекается, ну, и сами знаете.
    ..