определяет на плоскости кривую. Группа членов называется квадратичной формой, – линейной формой. Если в квадратичной форме содержатся только квадраты переменных, то такой ее вид называется каноническим, а векторы ортонормированного базиса, в котором квадратичная форма имеет канонический вид, называются главными осями квадратичной формы.
Матрица называется матрицей квадратичной формы. Здесь a 1 2 =a 2 1 . Чтобы матрицу B привести к диагональному виду, необходимо за базис взять собственные векторы этой матрицы, тогда , где λ 1 и λ 2 – собственные числа матрицы B.
В базисе из собственных векторов матрицы B квадратичная форма будет иметь канонический вид: λ 1 x 2 1 +λ 2 y 2 1 .
Эта операция соответствует повороту осей координат. Затем производится сдвиг начала координат, избавляясь тем самым от линейной формы.
Канонический вид кривой второго порядка: λ 1 x 2 2 +λ 2 y 2 2 =a , причем:
а) если λ 1 >0; λ 2 >0 – эллипс, в частности, при λ 1 =λ 2 это окружность;
б) если λ 1 >0, λ 2 <0 (λ 1 <0, λ 2 >0) имеем гиперболу;
в) если λ 1 =0 либо λ 2 =0, то кривая является параболой и после поворота осей координат имеет вид λ 1 x 2 1 =ax 1 +by 1 +c (здесь λ 2 =0). Дополняя до полного квадрата, будем иметь: λ 1 x 2 2 =b 1 y 2 .

Пример . Дано уравнение кривой 3x 2 +10xy+3y 2 -2x-14y-13=0 в системе координат (0,i,j), где i =(1,0) и j =(0,1).
1. Определить тип кривой.
2. Привести уравнение к каноническому виду и построить кривую в исходной системе координат.
3. Найти соответствующие преобразования координат.

Решение . Приводим квадратичную форму B=3x 2 +10xy+3y 2 к главным осям, то есть к каноническому виду. Матрица этой квадратичной формы . Находим собственные числа и собственные векторы этой матрицы:

Характеристическое уравнение:
; λ 1 =-2, λ 2 =8. Вид квадратичной формы: .
Исходное уравнение определяет гиперболу.
Заметим, что вид квадратичной формы неоднозначен. Можно записать 8x 1 2 -2y 1 2 , однако тип кривой остался тот же – гипербола.
Находим главные оси квадратичной формы, то есть собственные векторы матрицы B. .
Собственный вектор, отвечающий числу λ=-2 при x 1 =1: x 1 =(1,-1).
В качестве единичного собственного вектора принимаем вектор , где – длина вектора x 1 .
Координаты второго собственного вектора, соответствующего второму собственному числу λ=8, находим из системы
.
1 ,j 1).
По формулам (5) пункта 4.3.3. переходим к новому базису:
или

; . (*)


Вносим выражения x и y в исходное уравнение и, после преобразований, получаем: .
Выделяем полные квадраты : .
Проводим параллельный перенос осей координат в новое начало: , .
Если внести эти соотношения в (*) и разрешить эти равенства относительно x 2 и y 2 , то получим: , . В системе координат (0*, i 1 , j 1) данное уравнение имеет вид: .
Для построения кривой строим в старой системе координат новую: ось x 2 =0 задается в старой системе координат уравнением x-y-3=0, а ось y 2 =0 уравнением x+y-1=0. Начало новой системы координат 0 * (2,-1) является точкой пересечения этих прямых.
Для упрощения восприятия разобьем процесс построения графика на 2 этапа:
1. Переход к системе координат с осями x 2 =0, y 2 =0, заданными в старой системе координат уравнениями x-y-3=0 и x+y-1=0 соответственно.

2. Построение в полученной системе координат графика функции.

Окончательный вариант графика выглядит следующим образом (см. Решение :Скачать решение

Задание . Установить, что каждое из следующих уравнений определяет эллипс, и найти координаты его центра С, полуоси, эксцентриситет, уравнения директрис. Изобразить эллипс на чертеже, указав оси симметрии, фокусы и директрисы.
Решение .