Соли – сложные вещества, которые являются продуктом полного или неполного замещения атомов водорода кислоты на атомы металла, или замещения гидроксогрупп основания кислотным остатком.

В зависимости от состава соли делятся на средние (Na2SO4, K3PO4), кислые (NaHCO3, MgHPO4), основные (FeOHCl2, Al(OH)2Cl, (CaOH)2CO3, двойные (KAl(SO4)2), комплексные (Ag[(NH3)2]Cl, K4).

Средние соли

Средними солями называются соли, которые являются продуктом полного замещения атомов водорода соответствующей кислоты на атомы металла или ион NH4+. Например:

H2CO3 ® (NH4)2CO3; H3PO4 ® Na3PO4

Название средней соли образуется из названия аниона, за которым следует название катиона. Для солей бескислородных кислот наименование соли составляется из латинского названия неметалла с добавлением суффикса –ид , например, NaCl – хлорид натрия. Если неметалл проявляет переменную степень окисления, то после его названия в скобках римскими цифрами указывается степень окисления металла: FeS – сульфид железа (II), Fe2S3 – сульфид железа (III).

Для солей кислородсодержащих кислот к латинскому корню названия элемента добавляется окончание –ат для высших степеней окисления, -ит для более низких. Например,

K2SiO3 – силикат калия, KNO2 – нитрит калия,

KNO3 – нитрат калия, K3PO4 – фосфат калия,

Fe2(SO4)3 – сульфат железа (III), Na2SO3 – сульфит натрия.

Для солей некоторых кислот используется приставка –гипо для более низких степеней окисления и –пер для высоких степеней окисления. Например,

KClO – гипохлорит калия, KClO2 – хлорит калия,

KClO3 – хлорат калия, KClO4 – перхлорат калия.

Способы получения средних солей:

Взаимодействием металлов с неметаллами, кислотами и солями:

2Na + Cl2 = 2NaCl

Zn + 2HCl = ZnCl2 + H2

Fe + CuSO4 = FeSO4 + Cu

Взаимодействием оксидов:

основных с кислотами BaO + 2HNO3 = Ba(NO3)2 + H2O

кислотных со щелочами 2NaOH + SiO2 = Na2SiO3 + H2O

основных оксидов с кислотными Na2O + CO2 = Na2CO3

Взаимодействием кислот с основаниями и с амфотерными гидроксидами:

KOH + HCl = KCl + H2O

Cr(OH)3 + 3HNO3 = Cr(NO3)3 + 3H2O

Взаимодействием солей с кислотами, со щелочами и солями:

Na2CO3 + 2HCl = 2NaCl + CO2 + H2O

FeCl3 + 3KOH = 3KCl + Fe(OH)3¯

Na2SO4 + BaCl2 = BaSO4¯ + 2NaCl

Химические свойства средних солей:

Взаимодействие с металлами

Zn + Hg(NO3)2 = Zn(NO3)2 + Hg

Взаимодействие с кислотами

AgNO3 + HCl = AgCl¯ + HNO3

Взаимодействие со щелочами

CuSO4 + 2NaOH = Cu(OH)2¯ + Na2SO4

Взаимодействие с солями

CaCl2 + Na2CO3 = CaCO3¯ + 2NaCl

Разложение солей

NH4Cl = NH3 + HCl

CaCO3 = CaO + CO2

(NH4)2Cr2O7 = N2 + Cr2O3 + 4H2O

Кислые соли

Кислые соли – это продукты неполного замещения атомов водорода в молекулах многоосновных кислот на атомы металла.

Например: H2CO3 ® NaHCO3

H3PO4 ® NaH2PO4 ® Na2HPO4

При наименовании кислой соли к названию соответствующей средней соли добавляется приставка гидро- , которая указывает на наличие атомов водорода в кислотном остатке.

Например, NaHS – гидросульфид натрия, Na2HPO4 – гидрофосфат натрия, NaH2PO4 – дигидрофосфат натрия.

Кислые соли могут быть получены:

Действием избытка многоосновных кислот на основные оксиды, щелочи и средние соли:

K2O + 2H2S = 2KHS + H2O

NaOH + H2SO4 = NaHSO4 + H2O

K2SO4 + H2SO4 = 2KHSO4

Действием избытка кислотных оксидов на щелочи

NaOH + CO2 = NaHCO3

Химические свойства кислых солей:

Взаимодействие с избытком щелочи

Ca(HCO3)2 + Ca(OH)2 = 2CaCO3 + 2H2O

Взаимодействие с кислотами

Ca(HCO3)2 + 2HCl = CaCl2 + 2H2O + 2CO2

Разложение

Ca(HCO3)2 = CaCO3 + CO2 + H2O

Основные соли

Основные соли – это продукты неполного замещения гидроксогруппы в молекулах многокислотных оснований на кислотные остатки.

Mg(OH)2 ® MgOHNO3

Fe(OH)3 ®Fe(OH)2Cl ® FeOHCl2

При наименовании основной соли к названию соответствующей средней соли добавляется приставка гидроксо- , которая указывает на наличие гидроксогруппы. Например CrOHCl2 – гидроксохлорид хрома (III), Cr(OH)2Cl – дигидроксохлорид хрома (III).

Основные соли могут быть получены:

Неполной нейтрализации оснований кислотами

Что такое соли?

Соли – это такие сложные вещества, которые состоят из атомов металла и кислотных остатков. В некоторых случаях соли в своем составе могут содержать водород.

Если мы внимательно подойдем к рассмотрению этого определения, то заметим, что по своему составу соли чем-то похожи на кислоты, только с той разницей, что кислоты состоят из атомов водорода, а соли содержат ионы металла. Из этого следует, что соли являются продуктами замещения атомов водорода в кислоте на ионы металла. Так, к примеру, если взять известную каждому поваренную соль NaCl, то ее можно рассматривать как продукт замещения водорода в соляной кислоте НС1 на ион натрия.

Но бывают и исключения. Взять, например, соли аммония, в них кислотные остатки с частицей NH4+, а не с атомами металла.

Типы солей



А теперь давайте более подробно рассмотрим классификацию солей.

Классификация:

К кислым солям относятся такие, в которых атомы водорода в кислоте частично заменены атомами металла. Их можно получить с помощью нейтрализации основания избытком кислоты.
К средним солям или как их еще нормальным, относятся такие соли, у которых в молекулах кислоты все атомы водорода замещены на атомы металла, например, таких, как Na2CO3, KNO3 и т.д.
К основным солям относятся те, где у которых происходить неполное или частичное замещение гидроксильных групп оснований кислотными остатками, такими, как: Аl(OH)SO4 , Zn(OH)Cl и т.д.
В составе двойных солей находится два различных катиона, которые получаются с помощью кристаллизации из смешанного раствора солей с разными катионами, но одинаковыми анионами.
Но, а к смешанным солям относятся такие, в составе которых находятся два различных аниона. Также существуют комплексные соли, в состав которых входит комплексный катион или комплексный анион.

Физические свойства солей



Мы уже с вами знаем, что соли являются твердыми веществами, но следует знать, им свойственна различная растворимость в воде.

Если рассматривать соли с точки зрения растворимости в воде, то их можно поделить на такие группы, как:

Растворимые (Р),
- нерастворимые (Н)
- малорастворимые (М).

Номенклатура солей

Чтобы определить степень растворимости солей, можно обратиться к таблице растворимости кислот, оснований и солей в воде.



Как правило, все названия солее состоят из названий аниона, который представлен в именительном падеже и катиона, который стоит в родительном падеже.

Например: Na2SO4 - сульфат (И.п.) натрия (Р.п.).

Кроме того, для металлов в скобках указывают переменную степень окисления.

Возьмем для примера:

FeSO4 - сульфат железа (II).

Также следует знать, что существует международная номенклатура названия солей каждой кислоты, зависящая от латинского названия элемента. Так, например, соли серной кислоты, называются сульфатами. К примеру, СаSO4 – носит название сульфата кальция. А вот хлоридами называют соли соляной кислоты. Например, всем нам знакомая, NaCl называется хлоридом натрия.

Если же соли двухосновных кислот, то к их названию прибавляют частицу «би» или «гидро».

Например: Mg(HCl3)2 – будет звучать, как бикарбонат или гидрокарбонат магния.

Если в трехосновной кислоте один из атомов водорода заменить на металл, то следует еще добавить приставку «дигидро» и мы получим:

NaH2PO4 – дигидрофосфат натрия.

Химические свойства солей

А сейчас перейдем к рассмотрению химических свойств солей. Дело в том, что они определяются свойствами катионов и анионов, которые входят в их состав.





Значение соли для человеческого организма

В обществе давно идут дискуссии о вреде и пользе соли, которую она оказывает на организм человека. Но какой бы точки зрения не придерживались оппоненты, следует знать, что поваренная соль это минеральное природное вещество, которое жизненно необходимо для нашего организма.

Также следует знать, что при хронической нехватке в организме хлорида натрия, можно получить летальный исход. Ведь, если вспомнить уроки биологии, то нам известно, что тело человека на семьдесят процентов состоит из воды. А благодаря соли происходят процессы регулирования и поддержки водного баланса в нашем организме. Поэтому исключать употребление соли ни в коем случае нельзя. Конечно же, безмерное употребление соли так же ни к чему хорошему не приведет. И тут напрашивается вывод, что все должно быть в меру, так как ее недостаток, также как и избыток могут привести к нарушению баланса в нашем рационе.



Применение солей

Соли нашли свое применение, как в производственных целях, так и в нашей повседневной жизни. А сейчас давайте рассмотрим более детально и узнаем, где и какие соли чаще всего применяются.

Соли соляной кислоты

Из этого вида солей чаще всего используют хлорид натрия и хлорид калия. Поваренную соль, которую мы с вами употребляем в пищу добывают из морской, озерной воды, а также на соляных шахтах. И если хлорид натрия мы употребляем в пищу, то в промышленности его используют для получения хлора и соды. А вот хлорид калия незаменим в сельском хозяйстве. Его применяют, как калийное удобрение.

Соли серной кислоты

Что же касается солей серной кислоты, то они нашли широкое применение в медицине и строительстве. С ее помощью изготавливают гипс.

Соли азотной кислоты

Соли азотной кислоты, или как их еще называют нитраты, применяются в сельском хозяйстве в качестве удобрений. Самыми значимыми среди этих солей является нитрат натрия, нитрат калия, нитрат кальция и нитрат аммония. Их еще называют селитрами.

Ортофосфаты

Среди ортофосфатов, одним из наиболее важных, является ортофосфат кальция. Эта соль входит в основу таких минералов, как фосфориты и апатиты, которые необходимы при изготовлении фосфорных удобрений.

Соли угольной кислоты

Соли угольной кислоты или карбонат кальция можно встретит в природе, в виде мела, известняка и мрамора. Его используют для изготовления извести. А вот карбонат калия применяется, как составляющая сырья при производстве стекла и мыла.

Конечно, о соли вы знаете много интересного, но есть и такие факты, о которых вы вряд ли догадывались.

Вам, наверное, известен тот факт, что на Руси гостей было принято встречать с хлебом и солью, но злили вы, что за соль даже платили налог.

Известно ли вам, что были такие времена, когда соль ценилась больше золота. В древние времена римским воинам даже жалование платили солью. А самым дорогим и важным гостям в знак уважения преподносили горсть соли.

А знаете ли вы, что такое понятие, как «заработная плата» произошло от английского слова salary.

Оказывается, что поваренную соль можно применять в медицинских целях, так как она является отличным антисептиком и обладает ранозаживляющим и бактерицидным свойством. Ведь, наверное, каждый из вас наблюдал, будучи на море, что ранки на коже и мозоли в соленой морской воде заживают намного быстрее.

А знаете, почему зимой в гололед принято посыпать дорожки солью. Оказывается, если на лед насыпать соли, то лед превращается в воду, так как температура ее кристаллизации снизится на 1-3 градуса.

А известно ли вам, сколько соли человек употребляет в течение года. Оказывается, что за год мы с вами съедаем около восьми килограммов соли.

Оказывается, что людям, живущим в жарких странах, нужно употреблять соли в четыре раза больше, чем тем, кто живет в холодных климатических зонах, потому что во время жары выделяется большое количество пота, а с ним и выводятся соли с организма.

СОЛИ, класс химических соединений. Общепринятого определения понятия “Соли”, так же как и терминов “кислоты и основания”, продуктами взаимодействием которых соли являются, в настоящее время не существует. Соли могут рассматриваться как продукты замещения протонов водорода кислоты на ионы металлов, NH 4 + , СН 3 NН 3 + и др. катионы или групп ОН основания на анионы кислот (напр., Cl - , SO 4 2-).

Классификация

Продуктами полного замещения являются средние соли, например. Na 2 SO 4 , MgCl 2 , неполного-кислые или основные соли, например KHSO 4 , СuСlOН. Различают также простые соли, включающие один вид катионов и один вид анионов (например, NaCl), двойные соли содержащие два вида катионов (например, KAl(SO 4) 2 12H 2 O), смешанные соли, в составе которых два вида кислотных остатков (например, AgClBr). Комплексные соли содержат комплексные ионы, например K 4 .

Физические свойства

Типичные соли - кристаллические вещества с ионной структурой, например CsF Существуют также ковалентные соли, например АlСl 3 . В действительности характер химической связи,v многих солей смешанный.

По растворимости в воде различают растворимые, мало растворимые и практически нерастворимые соли. К растворимым относятся почти все соли натрия, калия и аммония, многие нитраты, ацетаты и хлориды, за исключением солей поливалентных металлов, гидролизующихся в воде, многие кислые соли.

Растворимость солей в воде при комнатной температуре

Анионы
F - Cl - Br - I - S 2- NO 3 - CO 3 2- SiO 3 2- SO 4 2- PO 4 3-
Na + Р Р Р Р Р Р Р Р Р Р
K + Р Р Р Р Р Р Р Р Р Р
NH 4 + Р Р Р Р Р Р Р Р Р Р
Mg 2+ РК Р Р Р М Р Н РК Р РК
Ca 2+ НК Р Р Р М Р Н РК М РК
Sr 2+ НК Р Р Р Р Р Н РК РК РК
Ba 2+ РК Р Р Р Р Р Н РК НК РК
Sn 2+ Р Р Р М РК Р Н Н Р Н
Pb 2+ Н М М М РК Р Н Н Н Н
Al 3+ М Р Р Р Г Р Г НК Р РК
Cr 3+ Р Р Р Р Г Р Г Н Р РК
Mn 2+ Р Р Р Р Н Р Н Н Р Н
Fe 2+ М Р Р Р Н Р Н Н Р Н
Fe 3+ Р Р Р - - Р Г Н Р РК
Co 2+ М Р Р Р Н Р Н Н Р Н
Ni 2+ М Р Р Р РК Р Н Н Р Н
Cu 2+ М Р Р - Н Р Г Н Р Н
Zn 2+ М Р Р Р РК Р Н Н Р Н
Cd 2+ Р Р Р Р РК Р Н Н Р Н
Hg 2+ Р Р М НК НК Р Н Н Р Н
Hg 2 2+ Р НК НК НК РК Р Н Н М Н
Ag + Р НК НК НК НК Р Н Н М Н

Условные обозначения:

Р - вещество хорошо растворимо в воде; М - малорастворимо; Н - практически нерастворимо в воде, но легко растворяется в слабых или разбавленных кислотах; РК - нерастворимо в воде и растворяется только в сильных неорганических кислотах; НК - нерастворимо ни в воде, ни в кислотах; Г - полностью гидролизуется при растворении и не существует в контакте с водой. Прочерк означает, что такое вещество вообще не существует.

В водных растворах соли полностью или частично диссоциируют на ионы. Соли слабых кислот и(или) слабых оснований подвергаются при этом гидролизу. Водные растворы солей содержат гидратированные ионы, ионные пары и более сложные химические формы, включающие продукты гидролиза и др. Ряд солей растворимы также в спиртах, ацетоне, амидах кислот и др. органических растворителях.

Из водных растворов соли могут кристаллизоваться в виде кристаллогидратов, из неводных - в виде кристаллосольватов, например СаВг 2 ЗС 2 Н 5 ОН.

Данные о различных процессах, протекающих в водносолевых системах, о растворимости солей при их совместном присутствии в зависимости от температуры, давления и концентрации, о составе твердых и жидких фаз могут быть получены при изучении диаграмм растворимости водно-солевых систем.

Общие способы синтеза солей.

1. Получение средних солей:

1) металла с неметаллом: 2Na + Cl 2 = 2NaCl

2) металла с кислотой: Zn + 2HCl = ZnCl 2 + H 2

3) металла с раствором соли менее активного металла Fe + CuSO 4 = FeSO 4 + Cu

4) основного оксида с кислотным оксидом: MgO + CO 2 = MgCO 3

5) основного оксида с кислотой CuO + H 2 SO 4 = CuSO 4 + H 2 O

6) основания с кислотным оксидом Ba(OH) 2 + CO 2 = BaCO 3 + H 2 O

7) основания с кислотой: Ca(OH) 2 + 2HCl = CaCl 2 + 2H 2 O

8) соли с кислотой: MgCO 3 + 2HCl = MgCl 2 + H 2 O + CO 2

BaCl 2 + H 2 SO 4 = BaSO 4 + 2HCl

9) раствора основания с раствором соли: Ba(OH) 2 + Na 2 SO 4 = 2NaOH + BaSO 4

10) растворов двух солей 3CaCl 2 + 2Na 3 PO 4 = Ca 3 (PO 4) 2 + 6NaCl

2. Получение кислых солей:

1. Взаимодействие кислоты с недостатком основания. KOH + H 2 SO 4 = KHSO 4 + H 2 O

2. Взаимодействие основания с избытком кислотного оксида

Ca(OH) 2 + 2CO 2 = Ca(HCO 3) 2

3. Взаимодействие средней соли с кислотой Ca 3 (PO 4) 2 + 4H 3 PO 4 = 3Ca(H 2 PO 4) 2

3. Получение основных солей:

1. Гидролиз солей, образованных слабым основанием и сильной кислотой

ZnCl 2 + H 2 O = Cl + HCl

2. Добавление (по каплям) небольших количеств щелочей к растворам средних солей металлов AlCl 3 + 2NaOH = Cl + 2NaCl

3. Взаимодействие солей слабых кислот со средними солями

2MgCl 2 + 2Na 2 CO 3 + H 2 O = 2 CO 3 + CO 2 + 4NaCl

4. Получение комплексных солей:

1. Реакции солей с лигандами: AgCl + 2NH 3 = Cl

FeCl 3 + 6KCN] = K 3 + 3KCl

5. Получение двойных солей:

1. Совместная кристаллизация двух солей:

Cr 2 (SO 4) 3 + K 2 SO 4 + 24H 2 O = 2 + NaCl

4. Окислительно-восстановительные реакции, обусловленные свойствами катиона или аниона. 2KMnO 4 + 16HCl = 2MnCl 2 + 2KCl + 5Cl 2 + 8H 2 O

2. Химические свойства кислых солей:

Термическое разложение с образованием средней соли

Ca(HCO 3) 2 = CaCO 3 + CO 2 + H 2 O

Взаимодействие со щёлочью. Получение средней соли.

Ba(HCO 3) 2 + Ba(OH) 2 = 2BaCO 3 + 2H 2 O

3. Химические свойства основных солей:

Термическое разложение. 2 CO 3 = 2CuO + CO 2 + H 2 O

Взаимодействие с кислотой: образование средней соли.

Sn(OH)Cl + HCl = SnCl 2 + H 2 O

4. Химические свойства комплексных солей:

1. Разрушение комплексов за счёт образования малорастворимых соединений:

2Cl + K 2 S = CuS + 2KCl + 4NH 3

2. Обмен лигандами между внешней и внутренней сферами.

K 2 + 6H 2 O = Cl 2 + 2KCl

5. Химические свойства двойных солей:

Взаимодействие с растворами щелочей: KCr(SO 4) 2 + 3KOH = Cr(OH) 3 + 2K 2 SO 4

2. Восстановление: KCr(SO 4) 2 + 2H°(Zn, разб. H 2 SO 4) = 2CrSO 4 + H 2 SO 4 + K 2 SO 4

Сырьем для промышленного получения ряда солей-хлоридов, сульфатов, карбонатов, боратов Na, К, Са, Mg служат морская и океаническая вода, природные рассолы, образующиеся при ее испарении, и твердые залежи солей. Для группы минералов, образующих осадочные солевые месторождения (сульфатов и хлоридов Na, К и Mg), применяют условное название “природные соли”. Наиболее крупные месторождения калиевых солей находятся в России (Соликамск), Канаде и Германии, мощные залежи фосфатных руд - в Северной Африке, России и Казахстане, NaNO3 - в Чили.

Соли используют в пищевой, химической, металлургической, стекольной, кожевенной, текстильной промышленности, в сельском хозяйстве, медицине и т. д.

Основные виды солей

1. Бораты (оксобораты), соли борных кислот: метаборной НВО 2 , ортоборной Н 3 ВО 3 и не выделенных в свободном состоянии полиборных. По числу атомов бора в молекуле делятся на моно-, ди, тетра-, гексабораты и т. д. Бораты называют также по образующим их кислотам и по числу молей В 2 О 3 , приходящемуся на 1 моль основного оксида. Так различные метабораты могут быть названы моноборатами, если содержат анион В(ОН) 4 или цепочечный анион {ВО 2 } n n- диборатами - если содержат цепочечный сдвоенный анион { В 2 О 3 (OН) 2 } n 2n- триборатами - если содержат кольцевой анион (В 3 О 6) 3- .

Структуры боратов включают борокислородные группировки - “блоки”, содержащие от 1 до б, а иногда и 9 атомов бора например:

Координационное число атомов бора 3 (борокислородные треугольные группировки) или 4 (тетраэдричные группировки). Борокислородные группировки - основа не только островных, но и более сложных структур - цепочечных, слоистых и каркасных полимеризованных. Последние образуются в результате отщепления воды в молекулах гидратированных боратах и возникновения мостиковых связей через атомы кислорода; процесс иногда сопровождается разрывом связи В-О внутри полианионов. Полианионы могут присоединять боковые группы - борокислородные тетраэдры или треугольники, их димеры или посторонние анионы.

Аммоний, щелочные, а также и другие металлы в степени окисления +1 образуют чаще всего гидратированные и безводные метабораты типа МВО 2 , тетрабораты М 2 B 4 O 7 , пентабораты МB 5 O 8 , а также декабораты М 4 B 10 O 17 nH 2 O. Щелочноземельные и другие металлы в степени окисления + 2 дают обычно гидратированные метабораты, трибораты М 2 B 6 O 11 и гексабораты МB 6 O 10 . а также безводные мета-, орто- и тетрабораты. Для металлов в степени окисления + 3 характерны гидратированные и безводные ортобораты МВО 3 .

Бораты - бесцветные аморфные вещества или кристаллы (в основном с низко-симметричной структурой - моноклинной или ромбической). Для безводных боратов температуры плавления находятся в интервале от 500 до 2000 °С; наиболее высокоплавки метабораты щелочных и орто- и метабораты щелочноземельных металлов. Большинство боратов при охлаждении их расплавов легко образует стекла. Твердость гидратированных боратов по шкале Мооса 2-5, безводных-до 9.

Гидратированные монобораты теряют кристаллизационную воду до ~180°С, полибораты -при 300-500°С; отщепление воды за счет групп ОН, координированных вокруг атомов бора, происходит до ~750°С. При полном обезвоживании образуются аморфные веществава, которыерые при 500-800°C в большинстве случаев претерпевают “боратовую перегруппировку” -кристаллизацию, сопровождающуюся (для полиборатов) частичным разложением с выделением В 2 О 3 .

Бораты щелочных металлов, аммония и Т1(I) растворимы в воде (особенно мета- и пентабораты), в водных растворах гидролизуются (растворыры имеют щелочную реакцию). Большинство боратов легко разлагается кислотами, в некоторых случаях - при действии СО 2 ; и SO 2 ;. Бораты щелочно-земельных и тяжелых металлов взаимодействуют с растворами щелочей, карбонатов и гидрокарбонатов щелочных металлов. Безводные бораты химически более стойки, чем гидратированные. С некоторыми спиртами, в частности с глицерином, бораты образуют растворимые в воде комплексы. При действии сильных окислителей, в частности Н 2 О 2 , или при электрохимическом окислении бораты превращаются в пероксобораты.

Известно около 100 природных боратов, являющихся в основном солями Na, Mg, Ca, Fe.

Гидратированные бораты получают: нейтрализацией Н 3 ВО 3 оксидами, гидроксидами или карбонатами металлов; обменными реакциями боратов щелочных металлов, чаще всего Na, с солями других металлов; реакцией взаимного превращения малорастворимых боратов с водными растворами боратов щелочных металов; гидротермальными процессами с использованием галогенидов щелочных металлов в качестве минерализующих добавок. Безводные бораты получают сплавлением или спеканием В 2 О 3 с оксидами или карбонатами металлов или обезвоживанием гидратов; монокристаллы выращивают в растворах боратов в расплавленных оксидах, напр Вi 2 О 3 .

Бораты используют: для получения других соединений бора; как компоненты шихты при производстве стекол, глазурей, эмалей, керамики; для огнестойких покрытий и пропиток; как компоненты флюсов для рафинирования, сварки и пайки металле”; в качестве пигментов и наполнителей лакокрасочных материалов; как протравы при крашении, ингибиторы коррозии, компоненты электролитов, люминофоров и др. Наибольшее применение находят бура и кальция бораты.

2. Галогениды , химические соединения галогенов с др. элементами. К галогенидам обычно относят соединения, в которых атомы галогена имеют большую электроотрицательность, чем др. элемент. Галогенидов не образуют Не, Ne и Аг. К простым, или бинарным, галогенидам ЭХn (n - чаще всего целое число от 1 у моногалогенидов до 7 у IF 7 , и ReF 7 , но может 6ыть и дробным, например 7/6 у Bi 6 Cl 7) относят, в частности, соли галогеноводородных кислот и межгалогенные соединения (напр., галогенфториды). Существуют также смешанные галогениды, полигалогениды, гидрогалогениды, оксогалогениды, оксигалогениды, гидроксогалогениды, тиогалогениды и комплексные галогениды. Степень окисления галогенов в галогенидах обычно равна -1.

По характеру связи элемент-галоген простые галогениды подразделяют на ионные и ковалентные. В действительности связи имеют смешанный характер с преобладанием вклада той или иной составляющей. Галогениды щелочных и щелочно-земельных металлов, а также многие моно- и дигалогениды др. металов - типичные соли, в которых преобладает ионный характер связи. Большинство из них относительно тугоплавки малолетучи, хорошо растворимы а воде; в водных растворах почти полностью диссоциируют на ионы. Свойствами солей обладают также тригалогениды редкоземельных элементов. Растворимость в воде ионных галогенидов, как правило, уменьшается от иодидов к фторидам. Хлориды, бромиды и иодиды Ag + , Сu + , Hg + и Pb 2+ плохо растворимы в воде.

Увеличение числа атомов галогенов в галогенидах металлов или отношения заряда металла к радиусу его иона приводит к повышению ковалентной составляющей связи, снижению растворимости в воде и термической устойчивости галогенидов, увеличению от летучести, повышению окислит, способности и склонности к гидролизу. Эти зависимости наблюдаются для галогенидов металлов одного и того же периода и в ряду галогенидов одного и того же металла. Их легко проследить на примере термических свойств. Например, для галогенидов металлов 4-го периода температуры плавления и кипения составляют соответственно 771 и 1430°С для КС1, 772 и 1960°C для СаС1 2 , 967 и 975°С для ScCl 3 , -24,1 и 136°С для TiCl 4 . Для UF 3 температура плавления ~ 1500°С, UF 4 1036°C, UF 5 348°С, UF 6 64,0 °С. В рядах соединений ЭХn при неизменном n ковлентность связи обычно увеличивается при переходе от фторидов к хлоридам и уменьшается при переходе от последних к бромидам и иодидам. Так, для АlF 3 температура возгонки 1280°C, А1С1 3 180°С, температура кипения А1Вr 3 254,8 °С, АlI 3 407°С. В ряду ZrF 4 , ZrCl 4 ZrBr 4 , ZrI 4 температура возгонки равна соответственно 906, 334, 355 и 418°С. В рядах MFn и МС1n где М-металл одной подгруппы, ковалентность связи уменьшается с ростом атомной массы металла. Фторидов и хлоридов металлов с примерно одинаковым вкладом ионной и ковалентной составляющей связи немного.

Средняя энергия связи элемент-галоген уменьшается при переходе от фторидов к иодидам и с повышением n (см. табл.).

Многие металлы галогениды, содержащие изолированные или мостиковые атомы О (соответственно оксо-и оксигалогениды), например оксотрифторид ванадия VOF 3 , диоксифторид ниобия NbO 2 F, диоксодииодид вольфрама WO 2 I 2 .

Комплексные галогениды (галогенометаллаты) содержат комплексные анионы, в которых атомы галогенов являются лигандами, например гексахлороплатинат(IV) калия K 2 , гептафторотанталат(V) натрия Na, гексафтороарсенат(V) лития Li. Наибольшей термической устойчивостью обладают фторо-, оксофторо- и хлорометаллаты. По характеру связей к комплексным галогенидам близки ионные соединения с катионами NF 4 + , N 2 F 3 + , C1F 2 + , XeF + и др.

Для многих галогенидов характерны ассоциация и полимеризация в жидкой и газовой фазах с образованием мостиковых связей. Наиболее склонны к этому галогениды металлов I и II групп, AlCl 3 , пентафториды Sb и переходных металлов, оксофториды состава MOF 4 . Известны галогениды со связью металл-металл, напр. Cl-Hg-Hg-Cl.

Фториды значительно отличаются по свойствам от др. галогенидов. Однако в простых галогенидах эти отличия выражены менее резко, чем в самих галогенах, а в комплексных галогенидах - слабее, чем в простых.

Многие ковалентные галогениды (особенно фториды)- сильные кислоты Льюиса, напр. AsF 5 , SbF 5 , ВF 3 , А1С1 3 . Фториды входят в состав сверхкислот. Высшие галогениды восстанавливаются металлами и водородом, например:

5WF 6 + W = 6WF 5

TiCl 4 + 2Mg = Ti + 2MgCl 2

UF 6 + H 2 = UF 4 + 2HF

Галогенидs металлов V-VIII групп, кроме Сг и Мn, восстанавливаются Н 2 до металлов, например:

WF 6 + ЗН 2 = W + 6HF

Многие ковалентные и ионные галогениды металлов взаимодействуют между собой с образованием комплексных галогенидов, например:

КС1 + TaCl 5 = K

Более легкие галогены могут вытеснять более тяжелые из галогенидов. Кислород может окислять галогениды с выделением С1 2 , Вг 2 , и I 2 . Одна из характерных реакций ковалентных галогенидов взаимодействие с водой (гидролиз) или ее парами при нагревании (пирогидролиз), приводящее к образованию оксидов, окси- или оксогалогенидов, гидроксидов и галогеноводородов.

Галогениды получают непосредственно из элементов, взаимодействием галогеноводородов или галогеноводородных кислот с элементами, оксидами, гидроксидами или солями, а также обменными реакциями.

Галогениды широко используют в технике как исходные вещества для получения галогенов, щелочных и щелочно-земельных металлов, как компоненты стекол и др. неорганических материалов; они являются промежуточными продуктами в производстве редких и некоторых цветных металлов, U, Si, Ge и др.

В природе галогениды образуют отдельные классы минералов, в которых представлены фториды (напр., минералы флюорит, криолит) и хлориды (сильвин, карналлит). Бром и иод входят в состав некоторых минералов в виде изоморфных примесей. Значительные количества галогенидов содержатся в воде морей и океанов, в соляных и подземных рассолах. Некоторые галогениды, например NaCl, KC1, СаCl 2 , входят в состав живых организмов.

3. Карбонаты (от лат. carbo, род. падеж carbonis уголь), соли угольной кислоты. Существуют средние карбонаты с анионом СО 3 2- и кислые, или гидрокарбонаты (устар. бикарбонаты), с анионом НСО 3 - . Карбонаты - кристаллические вещества. Большинство средних солей металлов в степени окисления + 2 кристаллизуется в гексагон. решетке типа кальцита или ромбическог типа арагонита.

Из средних карбонатов в воде растворяются только соли щелочных металлов, аммония и Тl(I). В результате значитильного гидролиза их растворыры имеют щелочную реакцию. Наиболее трудно растворимы карбонаты металлов в степени окисления + 2. Напротив, все гидрокарбонаты хорошо растворимы в воде. При обменных реакциях в водных растворах между солями металлов и Na 2 CO 3 осадки средних карбонатов образуются в тех случаях, когда их растворимость значительно меньше, чем соответствующих гидроксидов. Это имеет место для Са, Sr и их аналогов, лантаноидов, Ag(I), Mn(II), Pb(II) и Cd(II). Остальные катионы при взаимодействии с растворенными карбонатами в результате гидролиза могут давать не средние, а основные крабонаты или даже гидроксиды. Средние крабонаты, содержащие многозарядные катионы, иногда удается осадить из водных растворов в присутствии большого избытка СО 2 .

Химические свойства карбонатов обусловлены их принадлежностью к классу неорганических солей слабых кислот. Характерные особенности карбонатов связаны с их плохой растворимостью, а также термической нестойкостью как самих крабонатов, так и Н 2 СО 3 . Эти свойства используются при анализе крабонатов, основанном либо на их разложении сильными кислотами и количественном поглощении выделяющегося при этом СО 2 раствором щелочи, либо на осаждении иона СO 3 2- из раствора в виде ВаСО 3 . При действии избытка СО 2 на осадок среднего карбоната в растворе образуется гидрокарбонат, например: СаСО 3 + Н 2 O + CO 2 = Ca(HCO 3) 2 . Присутствие гидрокарбонатов в природной воде обусловливает ее временную жесткость. Гидрокарбонаты при легком нагревании уже при низких температурах вновь превращаются в средние карбонаты, которые при нагревании разлагаются до оксида и СО 2 . Чем активнее металл, тем выше температура разложения его карбоната. Так, Na 2 CO 3 плавится без разложения при 857 °С, а для карбонатов Са, Mg и А1 равновесные давления разложения достигают 0,1 МПа при температурах соответственно 820, 350 и 100 °С.

Карбонаты весьма широко распространены в природе, что обусловлено участием СО 2 и Н 2 O в процессах минералообразования. карбонаты играют большую роль в глобальных равновесиях между газообразным СО 2 в атмосфере, растворенным СО 2 ; и ионами НСО 3 - и СО 3 2- в гидросфере и твердыми солями в литосфере. Важнейшие минералы - кальцит СаСО 3 , магнезит MgCO 3 , сидерит FeСО 3 , смитсонит ZnСО 3 и нек-рые др. Известняк состоит в основном из кальцита или кальцитовых скелетных остатков организмов, редко из арагонита. Известны также природные гидратированные карбонаты щелочных металлов и Mg (напр., МgСО 3 ЗН 2 О, Nа 2 СО 3 10Н 2 О), двойные карбонаты [например, доломит CaMg(CO 3) 2 , трона Na 2 CO 3 NaHCO 3 2H 2 O] и основные [малахит CuCO 3 Cu(OH) 2 , гидроцеруссит 2РbСО 3 Pb(ОН) 2 ].

Наиболее важны калия карбонат, кальция карбонат и натрия карбонат. Многие природные карбонаты весьма ценные металлические руды (напр., карбонаты Zn, Fe, Mn, Pb, Cu). Гидрокарбонаты выполняют важную физиологическую роль, являясь буферными веществами, регулирующими постоянство рН крови.

4. Нитраты , соли азотной ккислотыты HNO 3 . Известны почти для всех металлов; существуют как в виде безводных солей М(NO 3)n (n - степень окисления металла М), так и в виде кристаллогидратов М(NO 3)n xН 2 O (х = 1-9). Из водных растворов при температуре, близкой к комнатной, только нитраты щелочных металлов кристаллизуются безводными, остальные - в виде кристаллогидратов. Физико-химические свойства безводного и гидратированного нитрата одного и того же металла могут сильно отличаться.

Безводные кристаллические соединения нитратов d-элементов окрашены. Условно нитраты могут быть разделены на соединения с преимущественно ковалентным типом связи (соли Be, Cr, Zn, Fe и др. переходных металлов) и с преимущественно ионным типом связи (соли щелочных и щелочно-земельных металлов). Для ионных нитратов характерны более высокая термическая устойчивость, преобладание кристаллических структур более высокой симметрии (кубической) и отсутствие расщепления полос нитрат-иона в ИК спектрах. Ковалентные нитраты имеют более высокую растворимость в органических растворителях, более низкую термическую устойчивость, их ИК спектры носят более сложный характер; некоторые ковалентные нитраты летучи при комнатной температуре, а при растворении в воде частично разлагаются с выделением оксидов азота.

Все безводные нитраты проявляют сильные окислительные свойства, обусловленные присутствием иона NO 3 - , при этом их окислительная способность возрастает при переходе от ионных к ковалентным нитратам. Последние разлагаются в интервале 100-300°С, ионные - при 400-600°С (NaNO 3 , КNO 3 и некоторые др. при нагревании плавятся). Продуктами разложения в твердой и жидкой фазах. являются последовательно нитриты, оксонитраты и оксиды, иногда - свободные металлы (когда оксид неустойчив, напр. Ag 2 O), а в газовой фазе - NO, NO 2 , О 2 и N 2 . Состав продуктов разложения зависит от природы металла и его степени окисления, скорости нагревания, температуры, состава газовой среды и др. условий. NH 4 NO 3 детонирует, а при быстром нагревании может разлагаться со взрывом, в этом случае образуются N 2 , О 2 и Н 2 О; при медленном нагревании разлагается на N 2 Ои Н 2 О.

Свободный ион NO 3 - в газовой фазе имеет геометрическое строение равностороннего треугольника с атомом N в центре, углы ONO ~ 120° и длины связей N-О 0,121 нм. В кристаллических и газообразных нитратах ион NO 3 - в основном сохраняет свою форму и размеры, что определяет пространств, строение нитратов. Ион NO 3 - может выступать как моно-, би-, тридентатный или мостиковый лиганд, поэтому нитраты характеризуется большим разнообразием типов кристаллических структур.

Переходные металлы в высоких степенях окисления из-за стерич. затруднений не могут образовывать безводные нитраты, и для них характерны оксонитраты, например UO 2 (NO 3) 2 , NbO(NO 3) 3 . Нитраты образуют большое количество двойных и комплексных солей с ионом NО 3 - во внутренней сфере. В водных средах в результате гидролиза катионы переходных металлов образуют гидроксонитраты (основные нитраты) переменного состава, которые могут быть выделены и в твердом состоянии.

Гидратированные нитраты отличаются от безводных тем, что в их кристаллических структурах ион металла в большинстве случаев связан с молекулами воды, а не с ионом NO 3 . Поэтому они лучше, чем безводные нитраты, растворяются в воде, но хуже - в органических растворителях, более слабые окислители, инконгруэнтно плавятся в кристаллизационной воде в интервале 25-100°С. При нагревании гидратированных нитратов безводные нитраты, как правило, не образуются, а происходит термолиз с образованием гидроксонитратов и затем оксонитратов и оксидов металлов.

По многим своим химическим свойствам нитраты аналогичны др. неорганическим солям. Характерные особенности нитратов обусловленны их очень высокой растворимостью в воде, низкой термической устойчивостью и способностью окислять органические и неорганические соединения. При восстановлении нитратов образуется смесь азотсодержащих продуктов NO 2 , NO, N 2 O, N 2 или NH 3 с преобладанием одного из них в зависимости от вида восстановителя, температуры, реакции среды и др. факторов.

Промышленные методы получения нитратов основаны на поглощении NH 3 растворами HNO 3 (для NH 4 NO 3) или на поглощении нитрозных газов (NO + NO 2) растворами щелочей или карбонатов (для нитратов щелочных металлов, Са, Mg, Ba), а также на разнообразных обменных реакциях солей металлов с HNO 3 или нитратами щелочных металлов. В лаборатории для получения безводных нитратов используют реакции переходных металлов или их соединений с жидким N 2 O 4 и его смесями с органическими растворителями либо реакции с N 2 O 5 .

Нитраты Na, К (натриевая и калиевая селитры) встречаются в виде природных залежей.

Нитраты применяют во многих отраслях промышленности. Аммония нитрит (аммиачная селитра) - основное азотсодержащее удобрение; в качестве удобрений используют также нитраты щелочных металлов и Са. Нитраты - компоненты ракетных топлив, пиротехнических составов, травильных растворов при крашении тканей; их используют для закалки металлов, консервации пищевых продуктов, как лекарственные средства и для получения оксидов металлов.

Нитраты токсичны. Вызывают отек легких, кашель, рвоту, острую сердечно-сосудистую недостаточность и др. Смертельная доза нитратов для человека 8-15 г, допустимое суточное потребление 5 мг/кг. Для суммы нитратов Na, К, Са, NH3 ПДК: в воде 45 мг/л", в почве 130 мг/кг (класс опасности 3); в овощах и фруктах (мг/кг)-картофель 250, капуста белокочанная поздняя 500, морковь поздняя 250, свекла 1400, лук репчатый 80, кабачки 400, дыни 90, арбузы, виноград, яблоки, груши 60. Несоблюдение агротехнических рекомендаций, избыточное внесение удобрений резко увеличивает содержание нитратов в с.-х. продуктах, поверхностном стоке с полей (40-5500 мг/л), грунтовых водах.

5. Нитриты , соли азотистой кислоты НNО 2 . Используют прежде всего нитриты щелочных металлов и аммония, меньше - щелочно-земельных и Зd-металлов, Рb и Ag. О ннитритах остальных металлов имеются только отрывочные сведения.

Нитриты металлов в степени окисления +2 образуют кристалогидраты с одной, двумя или четырьмя молекулами воды. Нитриты образуют двойные и тройные соли, напр. CsNO 2 AgNO 2 или Ba(NO 2) 2 Ni(NO 2) 2 2KNO 2 , а также комплексные соединения, например Na 3 .

Кристаллические структуры известны лишь для нескольких безводных нитритов. Анион NO 2 имеет нелинейную конфигурацию; угол ONO 115°, длина связи Н-О 0,115 нм; тип связи М-NO 2 ионно-ковалентный.

Хорошо растворимы в воде нитриты К, Na, Ba, плохо - нитриты Ag, Hg, Сu. С повышением температуры растворимость нитритов увеличивается. Почти все нитриты плохо растворимы в спиртах, эфирах и малополярных растворителях.

Нитриты термически малоустойчивы; плавятся без разложения только нитриты щелочных металлов, нитриты остальных металлов разлагаются при 25-300 °С. Механизм разложение нитритов сложен и включает ряд параллельно-последовательных реакций. Основные газообразные продукты разложения - NO, NO 2 , N 2 и О 2 , твёрдые - оксид металла или элементный металл. Выделение большого количества газов обусловливает взрывное разложение некоторых нитритов, например NH 4 NO 2 , который разлагается на N 2 и Н 2 О.

Характерные особенности нитритов связаны с их термической нестойкостью и способностью нитрит-иона быть как окислителем, так и восстановителем, в зависимости от среды и природы реагентов. В нейтральной среде нитриты обычно восстанавливаются до NO, в кислой окисляются до нитратов. Кислород и СО 2 не взаимодействуют с твердыми нитритами и их водными растворами. Нитриты способствуют разложению азотсодержащих органических веществ, в частности аминов, амидов и др. С органическими галогенидами RXН. реагируют с образованием как нитритов RONO, так и нитросоединений RNO 2 .

Промышленное получение нитритов основано на абсорбции нитрозного газа (смеси NO + NO 2) растворами Na 2 CO 3 или NaOH с последовательной кристализацией NaNO 2 ; нитриты остальных металлоов в промышленности и лабораториях получают обменной реакцией солей металлов с NaNO 2 или восстановлением нитратов этих металлов.

Нитриты применяют для синтеза азокрасителей, в производстве капролактама, в качестве окислителей и восстановителей в резинотехнической, текстильной и металлообрабатывающей промышленности, как консерванты пищевых продуктов. Нитриты например NaNО 2 и KNO 2 , токсичны, вызывают головную боль, рвоту, угнетают дыхание и т.д. При отравлении NaNO 2 в крови образуется метгемоглобин, повреждаются мембраны эритроцитов. Возможно образование нитрозаминов из NaNO 2 и аминов непосредственно в желудочно-кишечном тракте.

6. Сульфаты , соли серной кислоты. Известны средние сульфаты с анионом SO 4 2- кислые, или гидросульфаты, с анионом HSO 4 - , основные, содержащие наряду с анионом SO 4 2- - группы ОН, например Zn 2 (OH) 2 SO 4 . Существуют также двойные сульфаты, включающие два различных катиона. К ним относят две большие группы сульфатов - квасцы, а также шениты M 2 Э(SO 4) 2 6H 2 O, где М-однозарядный катион, Э - Mg, Zn и другие двухзарядные катионы. Известен тройной сульфат K 2 SO 4 MgSO 4 2CaSO 4 2H 2 O (минерал полигалит), двойные основные сульфаты, например минералы групп алунита и ярозита M 2 SO 4 Al 2 (SO 4) 3 4Al(OH 3 и M 2 SO 4 Fe 2 (SO 4) 3 4Fe(OH) 3 , где М - однозарядный катион. Сульфаты могут входить в состав смешанных солей, напр. 2Na 2 SO 4 Na 2 CO 3 (минерал беркеит), MgSO 4 KCl 3H 2 O (каинит).

Сульфаты - кристаллические вещества, средние и кислые в большенстве случаев хорошо растворимы в воде. Малорастворимы сульфаты кальции, стронция, свинца и некоторые др., практически нерастворимы BaSO 4 , RaSO 4 . Основные сульфаты, как правило, малорастворимы или практически нерастворимы, или гидролизуются водой. Из водных растворов сульфаты могут кристаллизоваться в виде кристаллогидратов. Кристаллогидраты некоторых тяжелых металлов называются купоросами; медный купорос СuSO 4 5H 2 O, железный купорос FeSO 4 7Н 2 О.

Средние сульфаты щелочных металлов термически устойчивы, в то время как кислые сульфаты при нагревании разлагаются, превращаясь в пиросульфаты: 2KHSO 4 = Н 2 О + K 2 S 2 O 7 . Средние сульфаты др. металлов, а также основные сульфаты при нагревании до достаточно высоких температур, как правило, разлагаются с образованием оксидов металлов и выделением SO 3 .

Сульфаты широко распространены в природе. Они встречаются в виде минералов, например гипс CaSO 4 H 2 O, мирабилит Na 2 SO 4 10Н 2 О, а также входят в состав морской и речной воды.

Многие сульфаты могут быть получены при взаимодействии H 2 SO 4 с металлами, их оксидами и гидроксидами, а также разложением солей летучих кислот серной кислотой.

Неорганические сульфаты находят широкое применение. Например, аммония сульфат -азотное удобрение, натрия сульфат используют в стекольной, бумажной промышленности, производстве вискозы и др. Природные сульфатные минералы - сырье дм промышленного получения соединений различных металлов, строит, материалов и др.

7. Сульфиты , соли сернистой кислоты H 2 SO 3 . Различают средние сульфиты с анионом SO 3 2- и кислые (гидросульфиты) с анионом HSO 3 - . Средние сульфиты - кристаллические вещества. Сульфиты аммония и щелочных металлов хорошо растворимы в воде; растворимость (г в 100 г): (NH 4) 2 SO 3 40,0 (13 °С), К 2 SО 3 106,7 (20 °С). В водных растворах образуют гидросульфиты. Сульфиты щелочно-земельных и некоторых др. металлов практически не растворимы в воде; растворимость MgSO 3 1 г в 100 г (40°С). Известны кристаллогидраты (NH 4) 2 SO 3 Н 2 O, Na 2 SO 3 7H 2 O, К 2 SO 3 2Н 2 O, MgSO 3 6H 2 O и др.

Безводные сульфиты при нагревании без доступа воздуха в запаянных сосудах диспропорционируют на сульфиды и сульфаты, при нагревании в токе N 2 теряют SO 2 , а при нагревании на воздухе легко окисляются до сульфатов. С SO 2 в водной среде средние сульфиты образуют гидросульфиты. Сульфиты - относительно сильные восстановители, окисляются в растворах хлором, бромом, Н 2 О 2 и др. до сульфатов. Разлагаются сильными кислотами (например, НС1) с выделением SO 2 .

Кристаллические гидросульфиты известны для К, Rb, Cs, NH 4 + , они малоустойчивы. Остальные гидросульфиты существуют только в водных растворах. Плотность NH 4 HSO 3 2,03 г/см 3 ; растворимость в воде (г в 100 г): NH 4 HSО 3 71,8 (0°С), КНSO 3 49 (20 °С).

При нагревании кристаллических гидросульфитов Na или К либо при насыщении SO 2 кишящего раствора пульпы M 2 SO 3 , образуются пиросульфиты (устаревшее -метабисульфиты) М 2 S 2 O 5 - соли неизвестной в свободном состоянии пиросернистой кислоты H 2 S 2 O 5 ; кристаллы, малоустойчивы; плотность (г/см 3): Na 2 S 2 O 5 1,48, К 2 S 2 O 5 2,34; выше ~ 160 °С разлагаются с выделением SO 2 ; растворяются в воде (с разложением до HSO 3 -), растворимость (г в 100 г): Na 2 S 2 O 5 64,4, К 2 S 2 O 5 44,7; образуют гидраты Na 2 S 2 O 5 7H 2 O и ЗК 2 S 2 O 5 2Н 2 О; восстановители.

Средние сульфиты щелочных металлов получают взаимодействием водного раствора М 2 СО 3 (или МОН) с SO 2 , a MSO 3 - пропусканием SO 2 через водную суспензию MCO 3 ; используют в основном SO 2 из отходящих газов контактных сернокислотных производств. Сульфиты применяют при отбеливании, крашении и печатании тканей, волокон, кож для консервирования зерна, зеленых кормов, кормовых промышленных отходов (NaHSO 3 ,

Na 2 S 2 О 5). CaSO 3 и Са(НSO 3) 2 - дезинфицирующие средства в виноделии и сахарной промышленности. NaНSO 3 , MgSO 3 , NН 4 НSO 3 - компоненты сульфитного щелока при варке целлюлозы; (NH 4) 2 SO 3 - поглотитель SO 2 ; NaHSO 3 - поглотитель H 2 S из отходящих газов производств, восстановитель в производстве сернистых красителей. K 2 S 2 O 5 - компонент кислых фиксажей в фотографии, антиоксидант, антисептик.

Методы разделения смесей

1. Фильтрование, разделение неоднородных систем жидкость - твердые частицы (суспензии) и газ - твердые частицы при помощи пористых фильтровальных перегородок (ФП), пропускающих жидкость или газ, но задерживающих твердые частицы. Движущая сила процесса - разность давлений по обе стороны ФП.

При разделении суспензий твердые частицы обычно образуют на ФП слой влажного осадка, который при необходимости промывают водой или др. жидкостью, а также обезвоживают, продувая через него воздух или другой газ. Фильтрование производят при постоянной разности давлений или при постоянной скорости процесса w (кол-во фильтрата в м 3 , проходящее через 1 м 2 поверхности ФП в единицу времени). При постоянной разности давлений суспензию подают на фильтр под действием вакуума или избыточного давления, а также поршневым насосом; при использованние центробежного насоса разность давлений повышается, а скорость процесса понижается.

В зависимости от концентрации суспензий различают несколько видов фильтрования. При концентрации более 1% фильтрование происходит с образованием осадка, а при концентрации менее 0,1% - с закупориванием пор ФП (осветление жидкостей). Если на ФП не образуется достаточно плотный слой осадка и в фильтрат попадают твердые частицы, фильтруют с использованием тонкодисперсных вспомогательных материалов (диатомит, перлит), которые предварительно наносят на ФП или добавляют к суспензии. При начальной концентрации менее 10% возможно частичное разделение и сгущение суспензий.

Различают фильтры непрерывного и периодического действия. Для последних основные стадии работы - фильтрование, промывка осадка, его обезвоживание и разгрузка. При этом применима оптимизация по критериям наибольшей производительности и наименьших затрат. Если промывку и обезвоживание не производят, a гидравлическим сопротивлением перегородки можно пренебречь, то наибольшая производительность достигается, когда время фильтрования равно продолжительности вспомогательных операций.

Применимы гибкие ФП из хлопчато-бумажных, шерстяных, синтетических и стеклянных тканей, а также нетканые ФП из природных и синтетических волокон и негибкие - керамические, металлокерамические и пенопластовые. Направления движения фильтрата и действия силы тяжести могут быть противоположными, совпадать или быть взаимно перпендикулярными.

Конструкции фильтров разнообразны. Одна из наиболее распространенных - вращающийся барабанный вакуум-фильтр (см. рис.) непрерывного действия, в котором направления движения фильтрата и действия силы тяжести противоположны. Секция распределительного устройства соединяет зоны I и II с источником вакуума и зоны III и IV - с источником сжатого воздуха. Фильтрат и промывная жидкость из зон I и II поступают в отдельные приемники. Получил распространение также автоматизированный фильтрпресс периодического действия с горизонтальными камерами, фильтровальной тканью в виде бесконечной ленты и эластичными мембранами для обезвоживания осадка прессованием. На нем выполняются чередующиеся операции заполнения камер суспензией, фильтрования, промывки и обезвоживания осадка, разъединения соседних камер и удаление осадка.

2.Фракционная кристаллизация

Различают следующие виды фракционной кристаллизации: массовую, на охлаждаемых поверхностях, направленную, зонную плавку.

Массовая кристаллизация. Метод состоит в одновременном получении большого кол-ва кристаллов во всем объеме аппарата. В промышленности реализовано нсколько вариантов массовой кристаллизации, которую осуществляют в периодически или непрерывно действующих аппаратах: емкостных, снабженных наружными охлаждающими рубашками либо внутренними змеевиками и часто перемешивающими устройствами; трубчатых, скребковых, дисковых, шнековых и др. Из-за отсутствия методики расчета параметр a э, при массовой кристаллизации находят экспериментально.

Кристаллизация с теплопередачей через стенку. В случае расплавов процесс проводят их охлаждением. При кристаллизации растворов выбор режима процесса определяется главным образом характером зависимости растворимости веществ от температуры. Если растворимость вещества мало изменяется с изменением температуры (напр., NaCI в воде), кристаллизацию осуществляют частичным или практически полным выпариванием насыщенного раствора при постоянной температуре (изотермическая кристаллизация). Вещества, растворимость которых сильно зависит от температуры (напр., КNО 3 в воде), кристаллизуют охлаждением горячих растворов, при этом исходное кол-во растворителя, который содержится в маточной жидкости, в системе не изменяется (изогидрическая кристаллизация). Образовавшиеся кристаллы в зависимости от их свойств, формы и условий проведения процесса захватывают различное количество маточного раствора. Содержание его в твердой фазе в виде включений в порах, трещинах и полостях существенно зависит от способа разделения кристаллов и маточной жидкости. Так, при отделении кристаллов на барабанном вакуум-фильтре концентрация в них маточного раствора составляет 10-30%, на фильтрующей центрифуге-3-10%.

Основное достоинства процесса: высокая производительность, отсутствие контакта разделяемой смеси и хладагента, простота аппаратурного оформления; недостатки: сравнительно невысокие коэффициент теплопередачи, инкрустация поверхностей охлаждения, большой захват маточной жидкости кристаллами, необходимость установки дополнит, оборудования для разделения твердой и жидкой фаз, недостаточно высокий выход кристаллического продукта. Примеры применения: получение хлоридов К и Na из сильвинита, разделение изомеров ксилола.

3. Выпаривание, осуществляют для концентрирования раствора, выделения растворенного вещества или получения чистого растворителя. Выпариванию подвергают главным образом водные растворы. Теплоносителем чаще всего служит водяной пар (давл. 1,0-1,2 МПа), который называют греющим, или первичным; пар, образующийся при кипении раствора, называют вторичным. Движущая сила выпаривания- разность температур греющего пара и кипящего раствора, называется полезной. Она всегда меньше, чем разность температур первичного и вторичного пара. Это обусловлено тем, что раствор кипит при более высокой температуре, чем чистый растворитель (физико-химическая, или концентрационная, депрессия). Кроме того, температура кипения раствора повышается из-за более высокого давления в растворе, чем в паровом пространстве. Причины повышения давления: гидростатическое давление раствора; гидравлическое сопротивление при движении кипящей (парожидкостной) смеси; увеличение скорости движения этой смеси вследствие того, что она занимает значительно больший объем, чем исходный раствор (соответственно гидростатическая, гидравлическая и инерционная депрессия).

Для выпаривания применяют аппараты, работающие под давлением или разрежением. Их основные элементы: греющая камера; сепаратор для разделения парожидкостной смеси в отбора сконцентрированного раствора; циркуляционная труба, по которой раствор возвращается из сепаратора в камеру (при многократном выпаривании). Конструкция аппарата определяется главным образом составом, физико-химическими свойствами, необходимой степенью концентрирования растворов, их склонностью к образованию накипи и пены (накипь резко уменьшает коэффициент теплопередачи, нарушает циркуляцию раствора и может быть причиной коррозии в сварных стыках, а обильное ценообразование повышает унос раствора вторичным паром).

Наиболее распространены вертикальные аппараты с трубчатыми греющими камерами, поверхность нагрева которых достигает 1250 м 2 . В таких аппаратах раствор находится в трубном, а греющий пар - в межтрубном пространстве камеры. Циркуляция раствора в них может быть естественной или принудительной, создаваемой специальным насосом.

Выпаривание маловязких (л до 6-8 мПа -с) ненасыщенных растворов хорошо растворимых солей, не выпадающих при концентрировании в осадок (например, NaNO 2 , NaNO 3 , NH 4 NO 3 , KC1) и не образующих накипи, осуществляют обычно в выпариваемых аппаратах с естественной циркуляцией, в греющих трубках которых раствор не только нагревается, но и кипит. Для выпаривания растворов плохо растворимых веществ, которые при концентрировании выпадают в осадок [например, СаСО 3 , CaSО 4 , Mg(OH) 2 , алюмосиликат Na], а также при опреснении морской воды применяют аппараты, над греющей камерой которых установлена дополнит, подъемная циркуляционная труба, обеспечивающая высокую скорость естественной циркуляции. Для выпаривания сильно пенящихся и термочувствительных продуктов, например в производстве дрожжей, ферментов, антибиотиков, фруктовых соков, растворимого кофе, используют вертикальные пленочные выпаривательные аппараты, в которых концентрирование происходит в результате однократного движения тонкого слоя (пленки) раствора вместе с вторичным паром вдоль трубок длиной 6-8 м (поверхность нагрева до 2200 м 2). Достоинства этих аппаратов: отсутствие гидростатического эффекта, небольшое гидравлическое сопротивление, высокий коэффициент теплопередачи, большая производительность при относительно небольших объемах

4. Центрифугирование, разделение суспензий, эмульсий и трехкомпонентных систем (эмульсий, содержащих твердую фазу) под действием центробежных сил. Применяется для выделения фракций из суспензий и эмульсий, а также для определения молекулярных масс полимеров, дисперсионного анализа.

Центрифугирование осуществляется с помощью специальных машин - центрифуг, основной частью которых является ротор (барабан), вращающийся с большой скоростью вокруг своей оси, благодаря чему создается поле центробежных сил до 20 000 g в промышленных центрифугах и до 350 000 g в лабораторных (g - ускорение свободного падения). Центрифугирование может производиться по принципам отстаивания или фильтрования соответственно в центрифугах со сплошным или перфорированным ротором, покрытым фильтрующим материалом. Различают два типа осадит, центрифуг: 1) периодического действия, в которых суспензия вводится в центр, часть полого ротора во время его вращения; твердые частицы оседают на внутренней поверхности ротора и выгружаются из него через спец. сопла или через периодически открывающиеся щели, осветленная жидкость (фугат) отводится из верх его части; 2) непрерывного действия, в которых суспензия подается вдоль оси полого ротора, а образовавшийся осадок выгружается с помощью шнека, вращающегося внутри ротора с несколько иной скоростью, чем ротор (рис. 1).

Центрифугование по принципу фильтрования чаще всего используют для разделения суспензий и шламов с относительно малым содержанием жидкой фазы и осуществляют в циклически работающих машинах. Суспензия подается в непрерывно вращающийся ротор порциями; после заполнения осадком части ротора подача суспензии прекращается, жидкая фаза отжимается, а осадок срезается ножом и удаляется. Применяются также центрифуги с пульсирующей выгрузкой осадка с помощью толкателя (вибрационно-поршневые, с пульсирующим поршнем), а также с гидравлической выгрузкой, когда сгущенная твердая фаза выводится из ротора, снабженного пакетом конических тарелок, через сопла.

Список литературы

Гл. редактор И.Л. Кнунянц. Большой энциклопедический словарь Химия. Москва 1998

Гл. редактор И.Л. Кнунянц. Химическая энциклопедия. Москва1998

Н. Я. Логинов, А. Г. Воскресенский, И. С. Солодин. Аналитическая химия. Москва 1979

Р. А. Лидин. Справочник по общей и неорганической химии. Москва 1997

Р. А. Лидин, В. А. Молочко, Л. Л. Андреева. Химические свойства неорганических веществ. Москва 1997

А. В. Суворов, А. А. Карцафа и др. Увлекательный мир химических превращений. Санкт-Петербург 1998

Е. В. Барковский. Введение в химию биогенных элементов и химический анализ. Минск 1997

Солями называются электролиты, диссоциирующие в водных растворах с образованием обязательно катиона металла и аниона кислотного остатка
Классификация солей приведена в табл. 9.

При написании формул любых солей необходимо руководствоваться одним правилом: суммарные заряды катионов и анионов должны быть равны по абсолютной величине. Исходя из этого, должны расставляться индексы. На пример, при написании формулы нитрата алюминия мы учитываем,что заряд катиона алюминия +3, а питрат-иона - 1: AlNO 3 (+3), и с помощью индексов уравниваем заряды (наименьшее общее кратное для 3 и 1 равно 3. Делим 3 на абсолютную величину заряда катиона алюминия - получается индекс. Делим 3 на абсолютную величину заряда аниона NO 3 — получается индекс 3). Формула: Al(NO 3) 3

Соли это

Средние, или нормальные, соли имеют в своем составе только катионы металла и анионы кислотного остатка. Их названия образованы от латинского названия элемента, образующего кислотный остаток, путем добавления соответствующего окончания в зависимости от степени окисления этого атома. Например, соль серной кислоты Na 2 SО 4 носит название (степень окисления серы +6), соль Na 2 S - (степень окисления серы -2) и т. п. В табл. 10 приведены названия солей, образованных наиболее широко применяемыми кислотами.

Названия средних солей лежат в основе всех других групп солей.

■ 106 Напишите формулы следующих средних солей: а) сульфат кальция; б) нитрат магния; в) хлорид алюминия; г) сульфид цинка; д) ; е) карбонат калия; ж) силикат кальция; з) фосфат железа (III).

Кислые соли отличаются от средних тем, что в их состав, помимо катиона металла, входит катион водорода, например NaHCO3 или Ca(H2PO4)2. Кислую соль можно представить как продукт неполного замещения атомов водорода в кислоте металлом. Следовательно, кислые соли могут быть образованы только двух- и более основными кислотами.
В состав молекулы кислой соли обычно входит «кислый» ион, зарядность которого зависит от ступени диссоциации кислоты. Например, диссоциация фосфорной кис лоты идет по трем ступеням:

На первой ступени диссоциации образуется однозарядный анион Н 2 РО 4 . Следовательно, в зависимости от заряда катиона металла, формулы солей будут выглядеть как NaH 2 PО 4 , Са(Н 2 РО 4) 2 , Ва(Н 2 РО 4) 2 и т. д. На второй ступени диссоциации образуется уже двухзарядный анион HPO 2 4 — . Формулы солей будут иметь такой вид: Na 2 HPО 4 , СаНРО 4 и т. д. Третья ступень диссоциации кислых солей не дает.
Названия кислых солей образованы от названий средних с добавлением приставки гидро-(от слова «гидрогениум» - ):
NaHCО 3 - гидрокарбонат натрия KHSО 4 - гидросульфат калия СаНРО 4 - гидрофосфат кальция
Если в состав кислого иона входят два атома водорода, например Н 2 РО 4 — , к названию соли добавляется еще приставка ди- (два): NaH 2 PО 4 - дигидрофосфат натрия, Са(Н 2 РО 4) 2 - дигидрофосфат кальция и т. д.

107. Напишите формулы следующих кислых солей: а) гидросульфат кальция; б) дигидрофосфат магния; в) гидрофосфат алюминия; г) гидрокарбонат бария; д) гидросульфит натрия; е) гидросульфит магния.
108. Можно ли получить кислые соли соляной и азотной кислоты. Обоснуйте свой ответ.

Все соли

Основные соли отличаются от остальных тем, что, помимо катиона металла и аниона кислотного остатка, в их состав входят анионы гидроксила, например Al(OH)(NО3) 2 . Здесь заряд катиона алюминия +3, а заряды гидроксил-иона-1 и двух нитрат-ионов - 2, всего - 3.
Названия основных солей образованы от названий средних с добавлением слова основной, например: Сu 2 (ОН) 2 СO 3 - основной карбонат меди, Al(OH) 2 NO 3 - основной нитрат алюминия.

109. Напишите формулы следующих основных солей: а) основной хлорид железа (II); б) основной сульфат железа (III); в) основной нитрат меди (II); г) основной хлорид кальция;д) основной хлорид магния; е) основной сульфат железа (III) ж) основной хлорид алюминия.

Формулы двойных солей, например KAl(SO4)3, строят, исходя из суммарных зарядов обоих катионов металлов и суммарного заряда анион

Суммарный заряд катионов + 4 , суммарный заряд анионов -4.
Названия двойных солей образуют так же, как и средних, только указывают названия обоих металлов: KAl(SO4)2 - сульфат калия-алюминия.

■ 110. Напишите формулы следующих солей:
а) фосфат магния; б) гидрофосфат магния; в) сульфат свинца; г) гидросульфат бария; д) гидросульфит бария; е) силикат калия; ж) нитрат алюминия; з) хлорид меди (II); и) карбонат железа (III); к) нитрат кальция; л) карбонат калия.

Химические свойства солей

1. Все средние соли являются сильными электролитами и легко диссоциируют:
Na 2 SO 4 ⇄ 2Na + + SO 2 4 —
Средние соли могут взаимодействовать с металлами, стоящими ряду напряжений левее металла, входящего в состав соли:
Fe + CuSO 4 = Сu + FeSO 4
Fe + Сu 2+ + SO 2 4 — = Сu + Fe 2+ + SO 2 4 —
Fe + Cu 2+ = Сu + Fe 2+
2. Соли реагируют со щелочами и кислотами по правилам, описанным в разделах «Основания» и «Кислоты»:
FeCl 3 + 3NaOH = Fe(OH) 3 ↓ + 3NaCl
Fe 3+ + 3Cl — + 3Na + + 3ОН — = Fe(OH) 3 + 3Na + + 3Cl —
Fe 3+ + 3OH — =Fe(OH) 3
Na 2 SO 3 + 2HCl = 2NaCl + H 2 SO 3
2Na + + SO 2 3 — + 2H + + 2Cl — = 2Na + + 2Cl — + SO 2 + H 2 O
2H + + SO 2 3 — = SO 2 + H 2 O
3. Соли могут взаимодействовать между собой, в результате чего образуются новые соли:
AgNO 3 + NaCl = NaNO 3 + AgCl
Ag + + NO 3 — + Na + + Cl — = Na + + NO 3 — + AgCl
Ag + + Cl — = AgCl
Поскольку эти обменные реакции осуществляются в основном в водных растворах, они протекают лишь тогда, когда одна из образующихся солей выпадает в осадок.
Все реакции обмена идут в соответствии с условиями протекания реакций до конца, перечисленными в § 23, стр. 89.

■ 111. Составьте уравнения следующих реакций и, пользуясь таблицей растворимости, определите, пройдут ли они до конца:
а) хлорид бария + ;
б) хлорид алюминия + ;
в) фосфат натрия + нитрат кальция;
г) хлорид магния + сульфат калия;
д) + нитрат свинца;
е) карбонат калия + сульфат марганца;
ж) + сульфат калия.
Уравнения записывайте в молекулярной и ионных формах.

■ 112. С какими из перечисленных ниже веществ будет реагировать хлорид железа (II): а) ; б) карбонат -кальция; в) гидроокись натрия; г) кремниевый ангидрид; д) ; е) гидроокись меди (II); ж) ?

113. Опишите свойства карбоната кальция как средней соли. Все уравнения записывайте в молекулярной и ионной формах.
114. Как осуществить ряд превращений:

Все уравнения записывайте в молекулярной и ионной формах.
115. Какое количество соли получится при реакции 8 г серы и 18 г цинка?
116. Какой объем водорода выделится при взаимодействии 7 г железа с 20 г серной кислоты?
117. Сколько молей поваренной соли получится при реакции 120 г едкого натра и 120 г соляной кислоты?
118. Сколько нитрата калия получится при реакции 2 молей едкого кали и 130 г азотной кислоты?

Гидролиз солей

Специфическим свойством солей является их способность гидролизоваться - подвергаться гидролизу (от греч. «гидро»-вода, «лизис» - разложение), т. е. разложению под действием воды. Считать гидролиз разложением в том смысле, в каком мы обычно это понимаем, нельзя, но несомненно одно - в реакции гидролиза всегда участвует .
- очень слабый электролит, диссоциирует плохо
Н 2 О ⇄ Н + + ОН —
и не меняет окраску индикатора. Щелочи и кислоты меняют окраску индикаторов, так как при их диссоциации в растворе образуется избыток ионов ОН — (в случае щелочей) и ионов Н + в случае кислот. В таких солях, как NaCl, K 2 SО 4 , которые образованы сильной кислотой (НСl, H 2 SO 4) и сильным основанием (NaOH, КОН), индикаторы окраски не меняют, так как в растворе этих
солей гидролиз практически не идет.
При гидролизе солей возможны четыре случая в зависимости от того, сильными или слабыми кислотой и основанием образована соль.
1. Если мы возьмем соль сильного основания и слабой кислоты, например K 2 S, произойдет следующее. Сульфид калия диссоциирует на ионы как сильный электролит:
K 2 S ⇄ 2K + + S 2-
Наряду с этим слабо диссоциирует :
H 2 O ⇄ H + + OH —
Анион серы S 2- является анионом слабой сероводородной кислоты, которая диссоциирует плохо. Это приводит к тому, что анион S 2- начинает присоединять к себе из воды катионы водорода, постепенно образуя малодиссоциирующие группировки:
S 2- + H + + OH — = HS — + OH —
HS — + H + + OH — = H 2 S + OH —
Поскольку катионы Н + из воды связываются, а анионы ОН — остаются, реакция среды становится щелочной. Таким образом, при гидролизе солей, образованных сильным основанием и слабой кислотой, реакция среды всегда бывает щелочная.

■ 119.Объясните при помощи ионных уравнений процесс гидролиза карбоната натрия.

2. Если берется соль, образованная слабым основанием и сильной кислотой, например Fe(NО 3) 3 , то при ее диссоциации образуются ионы:
Fe(NO 3) 3 ⇄ Fe 3+ + 3NО 3 —
Катион Fe3+ является катионом слабого основания - железа, которая диссоциирует очень плохо. Это приводит к тому, что катион Fe 3+ начинает присоединять к себе из воды анионы ОН — , образуя при этом мало-диссоциирующие группировки:
Fe 3+ + Н + + ОН — = Fe(OH) 2+ + + Н +
и далее
Fe(ОH) 2+ + Н + + ОН — = Fe(OH) 2 + + Н +
Наконец, процесс может дойти и до последней своей ступени:
Fe(OH) 2 + + Н + + ОН — = Fe(OH) 3 + H +
Следовательно, в растворе окажется избыток катионов водорода.
Таким образом, при гидролизе соли, образованной слабым основанием и сильной кислотой, реакция среды всегда кислая.

■ 120. Объясните при помощи ионных уравнений ход гидролиза хлорида алюминия.

3. Если соль образована сильным ос-нованием и сильной кислотой, то тогда ни катион, ни анион не связывает ионов воды и реакция остается нейтральной. Гидролиз практически не происходит.
4. Если соль образована слабым основанием и слабой кислотой, то реакция среды зависит от их степени диссоциации. Если основание и кислота имеют практически одинаковую , то реакция среды будет нейтральной.

■ 121. Нередко приходится видеть, как при реакции обмена вместо ожидаемого осадка соли выпадает осадок металла, например при реакции между хлоридом железа (III) FeCl 3 и карбонатом натрия Na 2 CО 3 образуется не Fe 2 (CО 3) 3 , a Fe(OH) 3 . Объясните это явление.
122. Среди перечисленных ниже солей укажите те, которые в растворе подвергаются гидролизу: KNO 3 , Cr 2 (SO 4) 3 , Аl 2 (СO 3) 3 , CaCl 2 , K 2 SiO 3 , Al 2 (SО 3) 3 .

Особенности свойств кислых солей

Несколько иные свойства у кислых солей. Они могут вступать в реакции с сохранением и с разрушением кислого иона. Например, реакция кислой соли с щелочью приводит к нейтрализации кислой соли и разрушению кислого иона, например:
NaHSO4 + КОН = KNaSO4 + Н2O
двойная соль
Na + + HSO 4 — + К + + ОН — = К + + Na + + SO 2 4 — + Н2O
HSO 4 — + OH — = SO 2 4 — + Н2О
Разрушение кислого иона можно представить следующим образом:
HSO 4 — ⇄ H + + SO 4 2-
H + + SO 2 4 — + OH — = SO 2 4 — + H2O
Разрушается кислый ион и при реакции с кислотами:
Mg(HCO3)2 + 2НСl = MgCl2 + 2Н2Сo3
Mg 2+ + 2НСО 3 — + 2Н + + 2Сl — = Mg 2+ + 2Сl — + 2Н2O + 2СO2
2НСО 3 — + 2Н + = 2Н2O + 2СO2
HCO 3 — + Н + = Н2O + СО2
Нейтрализацию можно проводить той же щелочью, которой образована соль:
NaHSO4 + NaOH = Na2SO4 + Н2O
Na + + HSO 4 — + Na + + ОН — = 2Na + + SO 4 2- + H2O
HSO 4 — + OH — = SO 4 2- + Н2O
Реакции с солями протекают без разрушения кислого иона:
Са(НСO3)2 + Na2CO3 = СаСО3 + 2NaHCO3
Са 2+ + 2НСO 3 — + 2Na + + СО 2 3 — = CaCO3↓+ 2Na + + 2НСO 3 —
Ca 2+ + CO 2 3 — = CaCO3
■ 123. Напишите в молекулярной и ионной формах уравнения следующих реакций:
а) гидросульфид калия + ;
б) гидрофосфат натрия + едкое кали;
в) дигидрофосфат кальция + карбонат натрия;
г) гидрокарбонат бария + сульфат калия;
д) гидросульфит кальция + .

Получение солей

На основании изученных свойств основных классов неорганических веществ можно вывести 10 способов получения солей.
1. Взаимодействием металла с неметаллом:
2Na + Cl2 = 2NaCl
Таким способом могут быть получены только соли бескислородных кислот. Это не ионная реакция.
2. Взаимодействием металла с кислотой:
Fe + H2SO4 = FeSO4 + H2
Fe + 2H + + SO 2 4 — =Fe 2+ + SO 2 4 — + H2
Fe + 2H + = Fe 2+ + H2
3. Взаимодействием металла с солью:
Сu + 2AgNO3 = Cu(NO3)2 + 2Ag↓
Сu + 2Ag + + 2NO 3 — = Cu 2+ 2NO 3 — + 2Ag↓
Сu + 2Ag + = Cu 2+ + 2Ag
4. Взаимодействием основного окисла с кислотой:
СuО + H2SO4 = CuSO4 + H2O
CuO + 2H + + SO 2 4 — = Cu 2+ + SO 2 4 — + H2O
СuО + 2Н + = Cu 2+ + H2O
5. Взаимодействием основного окисла с ангидридом кислоты:
3CaO + P2O5 = Ca3(PO4)2
Реакция не ионного характера.
6. Взаимодействием кислотного окисла с основанием:
СО2 + Сa(OH)2 = CaCO3 + H2O
CO2 + Ca 2+ + 2OH — = CaCO3 + H2O
7, Взаимодействие кислот с основанием (нейтрализация):
HNO3 + KOH = KNO3 + H2O
H + + NO 3 — + K + + OH — = K + + NO 3 — + H2O
H + + OH — = H2O

8. Взаимодействием основания с солью:
3NaOH + FeCl3 = Fe(OH)3 + 3NaCl
3Na + + 3ОН — + Fe 3+ + 3Cl — = Fe(OH)3↓ + 3Na — + 3Cl —
Fe 3+ + 3ОН — = Fe(OH)3↓
9. Взаимодействием кислоты с солью:
H2SO4 + Na2CO3 = Na2SO4 + H2O+ CO2
2H + + SO 2 4 — + 2Na + + CO 2 3 — =2Na + + SO 2 4 — + H2O + CO2
2H + + CO 2 3 — = H2O + CO2
10. Взаимодействием соли с солью:
Ba(NO3)2 + FeSO4 = Fe(NO3)2 + BaSO4
Ba 2+ + 2NO 3 — + Fe 2+ + SO 2 4 — = Fe 2+ + 2NO 3 — + BaSO4↓
Ba 2+ + SO 2 4 — = BaSO4↓

■124. Приведите все известные вам способы получения сульфата бария (все уравнения записывайте в молекулярной и ионной формах).
125. Приведите все возможные общие способы получения хлорида цинка.
126. Смешаны 40 г окиси меди и 200 мл 2 н. раствора серной кислоты. Какое количество сульфата меди при этом образуется?
127. Сколько карбоната кальция получится при реакции 2,8 л СO2 с 200 г 5% раствора Са(ОН)2?
128. Смешаны 300 г 10% раствора серной кислоты и 500 мл 1,5 н. раствора карбоната натрия. Какой объем двуокиси углерода при этом выделится?
129. На 80 г цинка, содержащего 10% примесей, действуют 200 мл 20% соляной кислоты. Сколько хлорида цинка образуется в результате реакции?

Статья на тему Соли

Кислые соли - это соли , которые образуются при неполном замещении атомов водорода в молекулах кислот атомамиметаллов .Они содержат в своём составе два вида катионов: катион металла (или аммония) и катион водорода, и многозарядный анион кислотного остатка . Катион водорода даёт к названию соли приставку «гидро», например, гидрокарбонат натрия. Такие соли диссоциируют в водных растворах на катионы металлов, катионы водорода и анионы кислотных остатков. Они образуются при избытке кислоты и содержат в своём составе атомы водорода. Кислые соли образуются только многоосновными кислотами и проявляют свойства как солей, так и кислот. Кислые соли сильных кислот (гидросульфаты, дигидрофосфаты) при гидролизе дают кислую реакцию среды (с чем и связано их название). В то же время растворы кислых солей слабых кислот (гидрокарбонаты, тартраты) могут обладать нейтральной или щелочной реакцией среды.

Физические свойства

Кислые соли – твёрдые кристаллические вещества , обладающие различной растворимостью, и характеризующиеся высокими температурами плавления. Окраска солей зависит от металла, входящего в их состав.

Химические свойства

1. Кислые соли реагируют с металлами, стоящими в ряду стандартных электродных потенциалов (ряд Бекетова) левее атома водорода:

2KНSO 4 + Mg = H 2 + MgSO 4 + K 2 SO 4 ,

2NaHCO 3 + Fe = H 2 + Na 2 CO 3 + Fe 2 (CO 3) 3

Так как эти реакции протекают в водных растворах, для опытов нельзя применять такие металлы как литий , натрий, калий , барий и другие активные металлы, которые при обычных условиях реагируют с водой.

2. Кислые соли реагируют с кислотами, в случае если образующаяся в результате реакции кислота более слабая или летучая, чем кислота, вступающая в реакцию:

NaHCO 3 + HCl = NaCl + H 2 O + CO 2

Для проведения таких реакций обычно берут сухую соль и действуют на нее концентрированной кислотой.

3. Кислые соли реагируют с водными растворами щелочей c образованием средней соли и воды:

1) Ba(HCO 3) 2 + Ba(OH) 2 = 2BaCO 3 + 2H 2 O

2) 2KHSO 4 + 2NaOH = 2H 2 O + K 2 SO 4 + Na 2 SO 4 ,

3) NaHCO 3 + NaOH = H 2 O + Na 2 CO 3

Такие реакции используют для получения средних солей. 4. Кислые соли реагируют с растворами солей, в случае, если в результате реакции выпадает осадок, выделяется газ или образуется вода:

1) 2KHSO 4 + MgCO 3 = H 2 O + CO 2 + K 2 SO 4 + MgSO 4 ,

2) 2KHSO 4 + BaCl 2 = BaSO 4 + K 2 SO 4 + 2HCl.

3) 2NaHCO 3 + BaCl 2 = BaCO 3 + Na 2 CO 3 + 2HCl

Указанные реакции используются, в том числе, для получения практически нерастворимых солей.

5. Некоторые кислые соли при нагревании разлагаются:

1) Ca(HCO 3) 2 = CaCO 3 + CO 2 + H 2 O

2) 2NaHCO 3 = CO 2 + H 2 O + Na 2 CO 3

6. Кислые соли реагируют с основными оксидами с образованием воды и средних солей:

1) 2KHSO 4 + MgO = H 2 O + MgSO 4 + K 2 SO 4 ,

2) 2NaHCO 3 + CuO = H 2 O + CuCO 3 + Na 2 CO 3

7. При гидролизе кислые соли распадаются на катионы металла и кислые анионы: КHSO 4 → К + + НSO 4–

Образующиеся кислые анионы, в свою очередь, обратимо диссоциируют: HSO 4– → H + + SO 4 2–

Получение

Кислые соли образуются при воздействии избытка кислоты на щелочь. В зависимости от количества молей кислоты (в данном случае - ортофосфорной ) могут образовываться дигидроортофосфаты (1) и гидроортофосфаты (2) :

    Ba(OH) 2 + 2H 3 PO 4 → Ba(H 2 PO 4) 2 + 2H 2 O

    Ba(OH) 2 + H 3 PO 4 → BaHPO 4 + 2H 2 O

При получении кислых солей важны молярные соотношения исходных веществ. Например, при молярном соотношении NaOH и H 2 SO 4 2:1 образуется средняя соль:

2NaOH + H 2 SO 4 = Na 2 SO 4 + 2H 2 O А при соотношении 1:1 - кислая: NaOH + H 2 SO 4 = NaHSO 4 + H 2 O

1. Кислые соли образуются в результате взаимодействия растворов кислот с металлами, стоящими в ряду активности металлов левее водорода:

Zn + 2H 2 SO 4 = H 2 + Zn(HSO 4) 2 ,

2. Кислые соли образуются в результате взаимодействия кислот с основными оксидами:

1) CaO + H 3 PO 4 = CaHPO 4 + H 2 O,

2) CuO + 2H 2 SO 4 = Cu(HSO 4) 2 + H 2 O

3. Кислые соли образуются в результате взаимодействия кислот с основаниями (реакция нейтрализации):

1) NaOH + H 2 SO 4 = NaHSO 4 + H 2 O

2) H 2 SO 4 + KOH = KHSO 4 + H 2 O

3) Mg(OH) 2 + 2H 2 SO 4 = Mg(HSO 4) 2 + 2H 2 O

В зависимости от соотношений концентраций кислот и оснований, участвующих в реакциях нейтрализации, можно получать средние, кислые и основные соли.

4. Кислые соли можно получить в результате взаимодействия кислот и средних солей:

Ca 3 (PO 4) 2 + H 3 PO 4 = 3CaHPO 4

5. Кислые соли образуются в результате взаимодействия оснований с избытком кислотного оксида.