БЕСКОНЕЧНО МАЛЫЕ ФУНКЦИИ И ИХ ОСНОВНЫЕ СВОЙСТВА

Функция y=f(x) называется бесконечно малой при x→a или при x →∞, если или , т.е. бесконечно малая функция – это функция, предел которой в данной точке равен нулю.

Примеры.

Установим следующее важное соотношение:

Теорема. Если функция y=f(x) представима при x→a в виде суммы постоянного числа b и бесконечно малой величины α(x): f (x)=b+ α(x) то .

Обратно, если , то f (x)=b+α(x) , где a(x) – бесконечно малая при x→a.

Доказательство .

Рассмотрим основные свойства бесконечно малых функций.

Теорема 1. Алгебраическая сумма двух, трех и вообще любого конечного числа бесконечно малых есть функция бесконечно малая.

Доказательство . Приведем доказательство для двух слагаемых. Пусть f(x)=α(x)+β(x) , где и . Нам нужно доказать, что при произвольном как угодно малом ε> 0 найдется δ> 0, такое, что для x , удовлетворяющих неравенству |x – a|<δ , выполняется |f(x)|< ε.

Итак, зафиксируем произвольное число ε> 0. Так как по условию теоремы α(x) – бесконечно малая функция, то найдется такое δ 1 > 0, что при |x – a|< δ 1 имеем |α(x)|< ε/ 2. Аналогично, так как β(x) – бесконечно малая, то найдется такое δ 2 > 0, что при |x – a|< δ 2 имеем | β(x)|< ε/ 2.

Возьмем δ=min{ δ 1 , δ 2 } .Тогда в окрестности точки a радиуса δ будет выполняться каждое из неравенств |α(x)|< ε/ 2 и | β(x)|< ε/ 2. Следовательно, в этой окрестности будет

|f(x)|=| α(x)+β(x) | ≤ |α(x)| + | β(x)| < ε/2 + ε/2= ε,

т.е. |f(x)|< ε, что и требовалось доказать.

Теорема 2. Произведение бесконечно малой функции a(x) на ограниченную функцию f(x) при x→a (или при x→∞ ) есть бесконечно малая функция.

Доказательство . Так как функция f(x) ограничена, то существует число М такое, что при всех значениях x из некоторой окрестности точки a|f(x)|≤M. Кроме того, так как a(x) – бесконечно малая функция при x→a , то для произвольного ε> 0 найдется окрестность точки a , в которой будет выполняться неравенство |α(x)|< ε/M . Тогда в меньшей из этих окрестностей имеем | αf|< ε/M = ε. А это и значит, что af – бесконечно малая. Для случая x→∞ доказательство проводится аналогично.

Из доказанной теоремы вытекают:

Следствие 1. Если и , то .

Следствие 2. Если и c= const, то .

Теорема 3. Отношение бесконечно малой функции α(x) на функцию f(x) , предел которой отличен от нуля, есть бесконечно малая функция.

Доказательство . Пусть . Тогда 1/f(x) есть ограниченная функция. Поэтому дробь есть произведение бесконечно малой функции на функцию ограниченную, т.е. функция бесконечно малая.


СООТНОШЕНИЕ МЕЖДУ БЕСКОНЕЧНО МАЛЫМИ И БЕСКОНЕЧНО БОЛЬШИМИ ФУНКЦИЯМИ

Теорема 1. Если функция f(x) является бесконечно большой при x→a , то функция 1/f(x) является бесконечно малой при x→a .

Доказательство. Возьмем произвольное число ε>0 и покажем, что при некотором δ>0 (зависящим от ε) при всех x , для которых |x – a|<δ , выполняется неравенство , а это и будет означать, что 1/f(x) – бесконечно малая функция. Действительно, так как f(x) – бесконечно большая функция при x→a , то найдется δ>0 такое, что как только |x – a|<δ , так |f(x)|> 1/ ε. Но тогда для тех же x .

Примеры.

Можно доказать и обратную теорему.

Теорема 2. Если функция f(x) - бесконечно малая при x→a (или x→∞) и не обращается в нуль, то y= 1/f(x) является бесконечно большой функцией.

Доказательство теоремы проведите самостоятельно.

Примеры.

Таким образом, простейшие свойства бесконечно малых и бесконечно больших функций можно записать с помощью следующих условных соотношений: A ≠ 0


ТЕОРЕМЫ О ПРЕДЕЛАХ

Теорема 1. Предел алгебраической суммы двух, трех и вообще определенного числа функций равен алгебраической сумме пределов этих функций, т.е.

Доказательство . Проведем доказательство для двух слагаемых, так как для любого числа слагаемых оно проводится так же. Пусть .Тогда f(x)=b+α(x) и g(x)=c+β(x) , где α и β – бесконечно малые функции. Следовательно,

f(x) + g(x)=(b + c) + (α(x) + β(x)) .

Так как b + c есть постоянная величина, а α(x) + β(x) – функция бесконечно малая, то

Пример. .

Теорема 2. Предел произведения двух, трех и вообще конечного числа функций равен произведению пределов этих функций:

Доказательство . Пусть . Следовательно, f(x)=b+α(x) и g(x)=c+β(x) и

fg = (b + α)(c + β) = bc + (bβ + cα + αβ).

Произведение bc есть величина постоянная. Функция bβ + c α + αβ на основании свойств бесконечно малых функций есть величина бесконечно малая. Поэтому .

Следствие 1. Постоянный множитель можно выносить за знак предела:

.

Следствие 2. Предел степени равен степени предела:

.

Пример. .

Теорема 3. Предел частного двух функций равен частному пределов этих функций, если предел знаменателя отличен от нуля, т.е.

.

Доказательство . Пусть . Следовательно, f(x)=b+α(x) и g(x)=c+β(x) , где α, β – бесконечно малые. Рассмотрим частное

Дробь является бесконечно малой функцией, так как числитель есть бесконечно малая функция, а знаменатель имеет предел c 2 ≠0.

Примеры.

Теорема 4. Пусть даны три функции f(x), u(x) и v(x) , удовлетворяющие неравенствам u(x)≤f(x)≤ v(x) . Если функции u(x) и v(x) имеют один и тот же предел при x→a (или x→∞ ), то и функция f(x) стремится к тому же пределу, т.е. если

, то .

Смысл этой теоремы понятен из рисунка.

Доказательство теоремы 4 можно найти, например, в учебнике: Пискунов Н. С. Дифференциальное и интегральное исчисления, т. 1 – М.: Наука, 1985.

Теорема 5. Если при x→a (или x→∞ ) функция y=f(x) принимает неотрицательные значения y≥0 и при этом стремится к пределу b , то этот предел не может быть отрицательным: b≥0 .

Доказательство . Доказательство проведем методом от противного. Предположим, что b<0 , тогда |y – b|≥|b| и, следовательно, модуль разности не стремится к нулю при x→a . Но тогда y не стремится к пределу b при x→a , что противоречит условию теоремы.

Теорема 6. Если две функции f(x) и g(x) при всех значениях аргумента x удовлетворяют неравенству f(x)≥ g(x) и имеют пределы , то имеет место неравенство b≥c .

Доказательство. По условию теоремы f(x)-g(x) ≥0 , следовательно, по теореме 5 , или .


ОДНОСТОРОННИЕ ПРЕДЕЛЫ

До сих пор мы рассматривали определение предела функции, когда x→a произвольным образом, т.е. предел функции не зависел от того, как располагалось x по отношению к a , слева или справа от a . Однако, довольно часто можно встретить функции, которые не имеют предела при этом условии, но они имеют предел, если x→a , оставаясь с одной стороны от а , слева или справа (см. рис.). Поэтому вводят понятия односторонних пределов.

Если f(x) стремится к пределу b при x стремящемся к некоторому числу a так, что x принимает только значения, меньшие a , то пишут и называют bпределом функции f(x) в точке a слева.

Бесконечно малые функции

Функцию %%f(x)%% называют бесконечно малой (б.м.) при %%x \to a \in \overline{\mathbb{R}}%%, если при этом стремлении аргумента предел функции равен нулю.

Понятие б.м. функции неразрывно связано с указанием об изменении ее аргумента. Можно говорить о б.м. функции при %%a \to a + 0%% и при %%a \to a - 0%%. Обычно б.м. функции обозначают первыми буквами греческого алфавита %%\alpha, \beta, \gamma, \ldots%%

Примеры

  1. Функция %%f(x) = x%% является б.м. при %%x \to 0%%, поскольку ее предел в точке %%a = 0%% равен нулю. Согласно теореме о связи двустороннего предела с односторонними эта функция — б.м. как при %%x \to +0%%, так и при %%x \to -0%%.
  2. Функция %%f(x) = 1/{x^2}%% — б.м. при %%x \to \infty%% (а также при %%x \to +\infty%% и при %%x \to -\infty%%).

Отличное от нуля постоянное число, сколь бы оно ни было мало по абсолютному значению, не является б.м. функцией. Для постоянных чисел исключение составляет лишь нуль, поскольку функция %%f(x) \equiv 0%% имеет нулевой предел.

Теорема

Функция %%f(x)%% имеет в точке %%a \in \overline{\mathbb{R}}%% расширенной числовой прямой конечный предел, равный числу %%b%%, тогда и только тогда, когда эта функция равна сумме этого числа %%b%% и б.м. функции %%\alpha(x)%% при %%x \to a%%, или $$ \exists~\lim\limits_{x \to a}{f(x)} = b \in \mathbb{R} \Leftrightarrow \left(f(x) = b + \alpha(x)\right) \land \left(\lim\limits_{x \to a}{\alpha(x) = 0}\right). $$

Свойства бесконечно малых функций

По правилам предельного перехода при %%c_k = 1~ \forall k = \overline{1, m}, m \in \mathbb{N}%%, следуют утверждения:

  1. Сумма конечного числа б.м. функций при %%x \to a%% есть б.м. при %%x \to a%%.
  2. Произведение любого числа б.м. функций при %%x \to a%% есть б.м. при %%x \to a%%.
  3. Произведение б.м. функций при %%x \to a%% и функции, ограниченной в некоторой проколотой окрестности %%\stackrel{\circ}{\text{U}}(a)%% точки а, есть б.м. при %%x \to a%% функция.

    Ясно, что произведение постоянной функции и б.м. при %%x \to a%% есть б.м. функция при %%x \to a%%.

Эквивалентные бесконечно малые функции

Бесконечно малые функции %%\alpha(x), \beta(x)%% при %%x \to a%% называются эквивалентными и пишутся %%\alpha(x) \sim \beta(x)%%, если

$$ \lim\limits_{x \to a}{\frac{\alpha(x)}{\beta(x)}} = \lim\limits_{x \to a}{\frac{\beta(x)}{\alpha(x)}} = 1. $$

Теормема о замене б.м. функций эквивалентными

Пусть %%\alpha(x), \alpha_1(x), \beta(x), \beta_1(x)%% — б.м. функции при %%x \to a%%, причем %%\alpha(x) \sim \alpha_1(x); \beta(x) \sim \beta_1(x)%%, тогда $$ \lim\limits_{x \to a}{\frac{\alpha(x)}{\beta(x)}} = \lim\limits_{x \to a}{\frac{\alpha_1(x)}{\beta_1(x)}}. $$

Эквивалентные б.м. функции.

Пусть %%\alpha(x)%% — б.м. функция при %%x \to a%%, тогда

  1. %%\sin(\alpha(x)) \sim \alpha(x)%%
  2. %%\displaystyle 1 - \cos(\alpha(x)) \sim \frac{\alpha^2(x)}{2}%%
  3. %%\tan \alpha(x) \sim \alpha(x)%%
  4. %%\arcsin\alpha(x) \sim \alpha(x)%%
  5. %%\arctan\alpha(x) \sim \alpha(x)%%
  6. %%\ln(1 + \alpha(x)) \sim \alpha(x)%%
  7. %%\displaystyle\sqrt[n]{1 + \alpha(x)} - 1 \sim \frac{\alpha(x)}{n}%%
  8. %%\displaystyle a^{\alpha(x)} - 1 \sim \alpha(x) \ln(a)%%

Пример

$$ \begin{array}{ll} \lim\limits_{x \to 0}{ \frac{\ln\cos x}{\sqrt{1 + x^2} - 1}} & = \lim\limits_{x \to 0}{\frac{\ln(1 + (\cos x - 1))}{\frac{x^2}{4}}} = \\ & = \lim\limits_{x \to 0}{\frac{4(\cos x - 1)}{x^2}} = \\ & = \lim\limits_{x \to 0}{-\frac{4 x^2}{2 x^2}} = -2 \end{array} $$

Бесконечно большие функции

Функцию %%f(x)%% называют бесконечно большой (б.б.) при %%x \to a \in \overline{\mathbb{R}}%%, если при этом стремлении аргумента функция имеет бесконечный предел.

Подобно б.м. функциям понятие б.б. функции неразрывно связано с указанием об изменении ее аргумента. Можно говорить о б.б. функции при %%x \to a + 0%% и %%x \to a - 0%%. Термин “бесконечно большая” говорит не об абсолютном значении функции, а о характере его изменения в окрестности рассматриваемой точки. Никакое постоянное число, как бы велико оно ни было по абсолютному значению, не является бесконечно большим.

Примеры

  1. Функция %%f(x) = 1/x%% — б.б. при %%x \to 0%%.
  2. Функция %%f(x) = x%% — б.б. при %%x \to \infty%%.

Если выполнены условия определений $$ \begin{array}{l} \lim\limits_{x \to a}{f(x)} = +\infty, \\ \lim\limits_{x \to a}{f(x)} = -\infty, \end{array} $$

то говорят о положительной или отрицательной б.б. при %%a%% функции.

Пример

Функция %%1/{x^2}%% — положительная б.б. при %%x \to 0%%.

Связь между б.б. и б.м. функциями

Если %%f(x)%% — б.б. при %%x \to a%% функция, то %%1/f(x)%% — б.м.

при %%x \to a%%. Если %%\alpha(x)%% — б.м. при %%x \to a%% функция, отличная от нуля в некоторой проколотой окрестности точки %%a%%, то %%1/\alpha(x)%% — б.б. при %%x \to a%%.

Свойства бесконечно больших функций

Приведем несколько свойств б.б. функций. Эти свойства непосредственно следуют из определения б.б. функции и свойств функций, имеющих конечные пределы, а также из теоремы о связи между б.б. и б.м. функциями.

  1. Произведение конечного числа б.б. функций при %%x \to a%% есть б.б. функция при %%x \to a%%. Действительно, если %%f_k(x), k = \overline{1, n}%% — б.б. функции при %%x \to a%%, то в некоторой проколотой окрестности точки %%a%% %%f_k(x) \ne 0%%, и по теореме о связи б.б. и б.м. функций %%1/f_k(x)%% — б.м. функция при %%x \to a%%. Получается %%\displaystyle\prod^{n}_{k = 1} 1/f_k(x)%% — б.м функция при %%x \to a%%, а %%\displaystyle\prod^{n}_{k = 1}f_k(x)%% — б.б. функция при %%x \to a%%.
  2. Произведение б.б. функции при %%x \to a%% и функции, которая в некоторой проколотой окрестности точки %%a%% по абсолютному значению больше положительной постоянной, есть б.б. функция при %%x \to a%%. В частности, произведение б.б. функции при %%x \to a%% и функции, имеющей в точке %%a%% конечный ненулевой предел, будет б.б. функцией при %%x \to a%%.
  3. Сумма ограниченной в некоторой проколотой окрестности точки %%a%% функции и б.б. функции при %%x \to a%% есть б.б. функция при %%x \to a%%.

    Например, функции %%x - \sin x%% и %%x + \cos x%% — б.б. при %%x \to \infty%%.

  4. Сумма двух б.б. функций при %%x \to a%% есть неопределенность. В зависимости от знака слагаемых характер изменения такой суммы может быть самым различным.

    Пример

    Пусть даны функции %%f(x)= x, g(x) = 2x, h(x) = -x, v(x) = x + \sin x%% — б.б. функции при %%x \to \infty%%. Тогда:

    • %%f(x) + g(x) = 3x%% — б.б. функция при %%x \to \infty%%;
    • %%f(x) + h(x) = 0%% — б.м. функция при %%x \to \infty%%;
    • %%h(x) + v(x) = \sin x%% не имет предела при %%x \to \infty%%.

Приводится определение бесконечно большой последовательности. Рассмотрены понятия окрестностей бесконечно удаленных точек. Дано универсальное определение предела последовательности, которое относится как к конечным, так и к бесконечным пределам. Рассмотрены примеры применения определения бесконечно большой последовательности.

Содержание

См. также: Определение предела последовательности

Определение

Последовательность { β n } называется бесконечно большой последовательностью , если для любого, сколь угодно большого числа M , существует такое натуральное число N M , зависящее от M , что для всех натуральных n > N M выполняется неравенство
|β n | > M .
В этом случае пишут
.
Или при .
Говорят, что стремится к бесконечности, или сходится к бесконечности .

Если , начиная с некоторого номера N 0 , то
( сходится к плюс бесконечности ).
Если же , то
( сходится к минус бесконечности ).

Запишем эти определения с помощью логических символов существования и всеобщности:
(1) .
(2) .
(3) .

Последовательности с пределами (2) и (3) являются частными случаями бесконечно большой последовательности (1). Из этих определений следует, что если предел последовательности равен плюс или минус бесконечности, то он также равен и бесконечности:
.
Обратное, естественно, не верно. Члены последовательности могут иметь чередующиеся знаки. При этом предел может равняться бесконечности, но без определенного знака.

Заметим также, что если какое-то свойство выполняется для произвольной последовательности с пределом равным бесконечности, то это же свойство выполняется и для последовательности, чей предел равен плюс или минус бесконечности.

Во многих учебниках по математическому анализу, в определении бесконечно большой последовательности указывается, что число M является положительным: M > 0 . Однако это требование является лишним. Если его отменить, то никаких противоречий не возникает. Просто малые или отрицательные значения для нас не представляют никакого интереса. Нас интересует поведение последовательности при сколь угодно больших положительных значениях M . Поэтому, если возникнет необходимость, то M можно ограничить снизу любым, наперед заданным числом a , то есть считать, что M > a .

Когда же мы определяли ε - окрестность конечной точки, то требование ε > 0 является важным. При отрицательных значениях, неравенство вообще не может выполняться.

Окрестности бесконечно удаленных точек

Когда мы рассматривали конечные пределы, то ввели понятие окрестности точки. Напомним, что окрестностью конечной точки является открытый интервал, содержащий эту точку. Также мы можем ввести понятия окрестностей бесконечно удаленных точек.

Пусть M - произвольное число.
Окрестностью точки "бесконечность" , , называется множество .
Окрестностью точки "плюс бесконечность" , , называется множество .
Окрестностью точки "минус бесконечность" , , называется множество .

Строго говоря, окрестностью точки "бесконечность" является множество
(4) ,
где M 1 и M 2 - произвольные положительные числа. Мы будем использовать первое определение, , поскольку оно проще. Хотя, все сказанное ниже, также справедливо и при использовании определения (4).

Теперь мы можем дать единое определение предела последовательности, которое относится как к конечным, так и к бесконечным пределам.

Универсальное определение предела последовательности .
Точка a (конечная или бесконечно удаленная) является пределом последовательности , если для любой окрестности этой точки существует такое натуральное число N , что все элементы последовательности с номерами принадлежат этой окрестности.

Таким образом, если предел существует, то за пределами окрестности точки a может находиться только конечное число членов последовательности, или пустое множество. Это условие является необходимым и достаточным. Доказательство этого свойства, точно такое, как для конечных пределов.

Свойство окрестности сходящейся последовательности
Для того, чтобы точка a (конечная или бесконечно удаленная) являлась пределом последовательности , необходимо и достаточно, чтобы за пределами любой окрестности этой точки находилось конечное число членов последовательности или пустое множество.
Доказательство .

Также иногда вводят понятия ε - окрестностей бесконечно удаленных точек.
Напомним, что ε - окрестностью конечной точки a называется множество .
Введем следующее обозначение. Пусть обозначает ε - окрестность точки a . Тогда для конечной точки,
.
Для бесконечно удаленных точек:
;
;
.
Используя понятия ε - окрестностей, можно дать еще одно универсальное определение предела последовательности:

Точка a (конечная или бесконечно удаленная) является пределом последовательности , если для любого положительного числа ε > 0 существует такое натуральное число N ε , зависящее от ε , что для всех номеров n > N ε члены x n принадлежат ε - окрестности точки a :
.

С помощью логических символов существования и всеобщности, это определение запишется так:
.

Примеры бесконечно больших последовательностей

Пример 1


.


.
Выпишем определение бесконечно большой последовательности:
(1) .
В нашем случае
.

Вводим числа и , связав их неравенствами:
.
По свойствам неравенств , если и , то
.
Заметим, что при это неравенство выполняется для любых n . Поэтому можно выбрать и так:
при ;
при .

Итак, для любого можно найти натуральное число , удовлетворяющее неравенству . Тогда для всех ,
.
Это означает, что . То есть последовательность является бесконечно большой.

Пример 2

Пользуясь определением бесконечно большой последовательности показать, что
.


(2) .
Общий член заданной последовательности имеет вид:
.

Вводим числа и :
.
.

Тогда для любого можно найти натуральное число, удовлетворяющее неравенству , так что для всех ,
.
Это означает, что .


.

Пример 3

Пользуясь определением бесконечно большой последовательности показать, что
.

Выпишем определение предела последовательности, равному минус бесконечности:
(3) .
Общий член заданной последовательности имеет вид:
.

Вводим числа и :
.
Отсюда видно, что если и , то
.

Поскольку для любого можно найти натуральное число, удовлетворяющее неравенству , то
.

При заданном , в качестве N можно взять любое натуральное число, удовлетворяющее следующему неравенству:
.

Пример 4

Пользуясь определением бесконечно большой последовательности показать, что
.

Выпишем общий член последовательности:
.
Выпишем определение предела последовательности, равному плюс бесконечности:
(2) .

Поскольку n есть натуральное число, n = 1, 2, 3, ... , то
;
;
.

Вводим числа и M , связав их неравенствами:
.
Отсюда видно, что если и , то
.

Итак, для любого числа M можно найти натуральное число, удовлетворяющее неравенству . Тогда для всех ,
.
Это означает, что .

Использованная литература:
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

См. также:

Исчисление бесконечно малых и больших

Исчисление бесконечно малых - вычисления, производимые с бесконечно малыми величинами, при которых производный результат рассматривается как бесконечная сумма бесконечно малых. Исчисление бесконечно малых величин является общим понятием для дифференциальных и интегральных исчислений , составляющих основу современной высшей математики . Понятие бесконечно малой величины тесно связано с понятием предела .

Бесконечно малая

Последовательность a n называется бесконечно малой , если . Например, последовательность чисел - бесконечно малая.

Функция называется бесконечно малой в окрестности точки x 0 , если .

Функция называется бесконечно малой на бесконечности , если либо .

Также бесконечно малой является функция, представляющая собой разность функции и её предела, то есть если , то f (x ) − a = α(x ) , .

Бесконечно большая величина

Последовательность a n называется бесконечно большой , если .

Функция называется бесконечно большой в окрестности точки x 0 , если .

Функция называется бесконечно большой на бесконечности , если либо .

Во всех случаях бесконечность справа от равенства подразумевается определённого знака (либо «плюс», либо «минус»). То есть, например, функция x sinx не является бесконечно большой при .

Свойства бесконечно малых и бесконечно больших

Сравнение бесконечно малых величин

Как сравнивать бесконечно малые величины?
Отношение бесконечно малых величин образует так называемую неопределённость .

Определения

Допустим, у нас есть бесконечно малые при одном и том же величины α(x ) и β(x ) (либо, что не суть важно для определения, бесконечно малые последовательности).

Для вычисления подобных пределов удобно использовать правило Лопиталя .

Примеры сравнения

С использованием О -символики полученные результаты могут быть записаны в следующем виде x 5 = o (x 3). В данном случае справедливы записи 2x 2 + 6x = O (x ) и x = O (2x 2 + 6x ).

Эквивалентные величины

Определение

Если , то бесконечно малые величины α и β называются эквивалентными ().
Очевидно, что эквивалентные величины являются частным случаем бесконечно малых величин одного порядка малости.

При справедливы следующие соотношения эквивалентности: , , .

Теорема

Предел частного (отношения) двух бесконечно малых величин не изменится, если одну из них (или обе) заменить эквивалентной величиной .

Данная теорема имеет прикладное значение при нахождении пределов (см. пример).

Пример использования

Заменяя s i n 2x эквивалентной величиной 2x , получаем

Исторический очерк

Понятие «бесконечно малое» обсуждалось ещё в античные времена в связи с концепцией неделимых атомов, однако в классическую математику не вошло. Вновь оно возродилось с появлением в XVI веке «метода неделимых» - разбиения исследуемой фигуры на бесконечно малые сечения.

В XVII веке произошла алгебраизация исчисления бесконечно малых. Они стали определяться как числовые величины, которые меньше всякой конечной (ненулевой) величины и всё же не равны нулю. Искусство анализа заключалось в составлении соотношения, содержащего бесконечно малые (дифференциалы), и затем - в его интегрировании .

Математики старой школы подвергли концепцию бесконечно малых резкой критике. Мишель Ролль писал, что новое исчисление есть «набор гениальных ошибок »; Вольтер ядовито заметил, что это исчисление представляет собой искусство вычислять и точно измерять вещи, существование которых не может быть доказано. Даже Гюйгенс признавался, что не понимает смысла дифференциалов высших порядков.

Как иронию судьбы можно рассматривать появление в середине века нестандартного анализа , который доказал, что первоначальная точка зрения - актуальные бесконечно малые - также непротиворечива и могла бы быть положена в основу анализа.

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Бесконечно большая" в других словарях:

    Переменная величина Y, обратная бесконечно малой величине X, то есть Y = 1/X … Большой Энциклопедический словарь

    Переменная величина y, обратная бесконечно малой величине x, то есть y = 1/x. * * * БЕСКОНЕЧНО БОЛЬШАЯ БЕСКОНЕЧНО БОЛЬШАЯ, переменная величина Y, обратная бесконечно малой величине X, то есть Y = 1/X … Энциклопедический словарь

    В математике, переменная величина, которая в данном процессе изменения становится и остаётся по абсолютной величине больше любого наперёд заданного числа. Изучение Б. б. величин может быть сведено к изучению бесконечно малых (См.… … Большая советская энциклопедия

Опр.: Функция называется бесконечно малой при , если .

В записи « » будем предполагать, что x 0 может принимать как конечное значение: x 0 = Сonst , так и бесконечное: x 0 = ∞.

Свойства бесконечно малых функций:

1) Алгебраическая сумма конечного числа бесконечно малых при функций является бесконечно малой при функцией.

2) Произведение конечного числа бесконечно малых при функций является бесконечно малой при функцией.

3) Произведение ограниченной функции на бесконечно малую функцию является бесконечно малой функцией.

4) Частное от деления бесконечно малой при функции на функцию, предел которой отличен от нуля, является бесконечно малой при функцией.

Пример : Функция y = 2 + x является бесконечно малой при , т.к. .

Опр.: Функция называется бесконечно большой при , если .

Свойства бесконечно больших функций:

1) Сумма бесконечно больших при функций является бесконечно большой при функцией.

2) Произведение бесконечно большой при функции на функцию, предел которой отличен от нуля, является бесконечно большой при функцией.

3) Сумма бесконечно большой при функции и ограниченной функции является бесконечно большой функцией.

4) Частное от деления бесконечно большой при функции на функцию, имеющую конечный предел, является бесконечно большой при функцией.

Пример : Функция y = является бесконечно большой при , т.к. .

Теорема. Связь между бесконечно малыми и бесконечно большими величинами . Если функция является бесконечно малой при , то функция является бесконечно большой при . И обратно, если функция является бесконечно большой при , то функция является бесконечно малой при .

Отношение двух бесконечно малых принято обозначать символом , двух бесконечно больших - символом . Оба отношения являются неопределёнными в том смысле, что их предел может как существовать, так и не существовать, быть равным некоторому числу или быть бесконечным в зависимости от вида конкретных функций, входящих в неопределённые выражения.

Кроме неопределённостей вида и неопределёнными являются следующие выражения:



Разность бесконечно больших одного знака;

Произведение бесконечно малой на бесконечно большую;

Показательно-степенная функция, основание которой стремится к 1, а показатель – к ;

Показательно-степенная функция, основание которой является бесконечно малой, а показатель – бесконечно большой;

Показательно-степенная функция, основание и показатель которой являются бесконечно малыми;

Показательно-степенная функция, основание которой является бесконечно большой, а показатель – бесконечно малой.

Говорят, что имеет место неопределенность соответствующего вида. Вычисление предела называют в этих случаях раскрытием неопределенности . Для раскрытия неопределенности выражение, стоящее под знаком предела, преобразуют к виду, не содержащему неопределенности.

При вычислении пределов используют свойства пределов, а также свойства бесконечно малых и бесконечно больших функций.

Рассмотрим примеры вычислений различных пределов.

1) . 2) .

4) , т.к. произведение бесконечно малой функции при на ограниченную функцию является бесконечно малой.

5) . 6) .

7) = =

. В данном случае имела место неопределенность типа , которую удалось раскрыть с помощью разложения многочленов на множители и сокращения на общий множитель .

= .

В данном случае имела место неопределенность типа , которую удалось раскрыть с помощью умножения числителя и знаменателя на выражение , использования формулы , и последующего сокращения дроби на ( +1).

9)
. В данном примере неопределенность типа была раскрыта почленным делением числителя и знаменателя дроби на старшую степень .

Замечательные пределы

Первый замечательный предел : .

Доказательство. Рассмотрим единичную окружность (рис.3).

Рис.3. Единичная окружность

Пусть х – радианная мера центрального угла МОА (), тогда ОА = R = 1, МК = sin x , AT = tg x . Сравнивая площади треугольников ОМА , ОТА и сектора ОМА , получим:

,

.

Разделим последнее неравенство на sin x , получим:

.

Так как при , то по свойству 5) пределов

Откуда и обратная величина при , что и требовалось доказать.

Замечание: Если функция является бесконечно малой при , т.е. , то первый замечательный предел имеет вид:

.

Рассмотрим примеры вычислений пределов с использованием первого замечательного предела.

При вычислении этого предела использовали тригонометрическую формулу: .

.

Рассмотрим примеры вычислений пределов с использованием второго замечательного предела.

2) .

3) . Имеет место неопределенность типа . Сделаем замену , тогда ; при .