Под устойчивостью дисперсных систем понимают неизменность их свойств и состава во времени, в том числе дисперсности фазы, межчастичного взаимодействия. Здесь рассматриваются вопросы устойчивости систем по отношению к укрупнению или агрегации частиц дисперсной фазы, к их осаждению. Ликвидация агрегативной устойчивости необходима в процессах выделения осадков при разделении фаз, при очистке сточных вод и промышленных выбросов.

По классификации П.А. Ребиндера дисперсные системы делят на лиофильные, получающиеся при самопроизвольном диспергировании одной из фаз, и лиофобные, получающиеся при принудительном диспергировании и конденсации с пересыщением. Лиофобные системы обладают избытком поверхностной энергии, в них самопроизвольно могут идти процессы укрупнения частиц, т.е. может происходить снижение поверхностной энергии за счет уменьшения удельной поверхности. Такие системы и называют агрегативно неустойчивыми.

Агрегация частиц может заключаться в переносе вещества от мелких частиц к крупным, так как химический потенциал последних меньше /изотермическая перегонка/. Крупные частицы растут, а мелкие частицы постепенно растворяются /испаряются/. Агрегация частиц может происходить и путем слипания /слияния/ частиц – наиболее характерный путь для дисперсных систем /коагуляция/.

Различают термодинамические и кинетические факторы агрегативной устойчивости дисперсных систем. Движущей силой коагуляции является избыточная поверхностная энергия. Основными факторами, влияющими на устойчивость систем, являются факторы, снижающие поверхностное натяжение при сохранении размера поверхности. Эти факторы относят к термодинамическим. Они уменьшают вероятность эффективных соударений частиц, создают потенциальные барьеры, замедляющие или даже исключающие процесс коагуляции. Чем меньше поверхностное натяжение, тем больше термодинамическая устойчивость системы.



Кинетические факторы связаны в основном с гидродинамическими свойствами среды: замедление сближения частиц, разрушение прослоек среды между частицами. В целом, различают следующие факторы устойчивости дисперсных систем:

1. Гидродинамический – из-за изменения вязкости среды и плотности фазы и дисперсионной среды снижается скорость коагуляции;

2. Структурно – механический фактор обусловлен наличием на поверхности частиц упругой, механически прочной пленки, разрушение которой требует затрат энергии и времени;

3. Электростатический – из-за возникновения двойного электростатического слоя/ДЭС/ на поверхности частиц уменьшается межфазное натяжение. Появление электрического потенциала на межфазной поверхности возможно из-за поверхностной электролитической диссоциации или адсорбции электролитов;

4. Энтропийный фактор проявляется в системах, в которых частицы или их поверхностные слои участвуют в тепловом движении. Сущность его состоит в стремлении дисперсной фазы к равномерному распределению по объему системы;

5. Адсорбционно-сольватный – проявляется в уменьшении межфазного натяжения вследствие адсорбции и сольватации при взаимодействии частиц с дисперсионной средой.

В реальных системах агрегативная устойчивость определяется одновременно совокупностью термодинамических и кинетических факторов.

Согласно современным представлениям устойчивость систем (лиофобных коллоидов) определяется балансом сил молекулярного притяжения и электростатического отталкивания между частицами. Универсальным свойством дисперсных систем является наличие на границе раздела фаз двойного электрического слоя (ДЭС).

Поверхностный заряд частиц образуется в результате одного из процессов:

– диссоциации поверхностных групп частиц;

– адсорбции потенциалопределяющих ионов, т.е. ионов, входя щих в состав кристаллической решетки или сходных с ними;

– адсорбции ионогенных ПАВ;

– изоморфного замещения, например, заряд частиц большинства глин формируется за счет замещения четырехвалентных ионов кремния на Аl +3 или Са +2 , с дефицитом положительного заряда на частице.

В первых трех случаях поверхностный заряд можно контролировать, в определенных пределах регулировать величину заряда, знак, изменяя концентрацию ионов в системе. Например, в результате диссоциации поверхностных силанольных групп частицы кремнезема могут приобретать заряд:

Плотность поверхностного заряда равна числу элементарных зарядов на единице поверхности. Поверхностный заряд частицы в дисперсной системе компенсируется суммой зарядов, локализованных в диффузной и плотной (непосредственно прилегающей части монослоя противоионов) частях ДЭС.

Явление возникновения разности потенциалов при осаждении дисперсной фазы получило название потенциала седиментации /оседания/. При относительном перемещении фаз независимо от причин, вызывающих перемещение, происходит разрыв ДЭС по плотности скольжения. Плоскость скольжения обычно проходит по диффузному слою ДЭС, и часть его ионов остается в дисперсионной среде. В результате дисперсионная среда и ее дисперсная фаза оказываются противоположно заряженными. Потенциал, возникающий на плоскости скольжения при отрыве части диффузного слоя, называется электрокинетическим потенциалом, или z /дзета/-потенциалом. Дзета-потенциал, отражая свойства ДЭС, характеризует природу фаз и межфазного взаимодействия. Величина электрокинетического потенциала зависит от скорости движения фаз, вязкости среды, природы фаз и других факторов. Понижение температуры, введение в систему электролитов, специфически взаимодействующих с поверхностью, увеличение заряда ионов электролита приводит к уменьшению дзета-потенциала.

Величина дзета-потенциала зависит от природы поверхности контактирующих фаз. На поверхностях полиэлектролитов, содержащих ионогенные группы, а так же на поверхности многих неорганических оксидов величина дзета-потенциала может достигать высоких значений - 100 мВ и более. Если на поверхности адсорбируются противоионы, то электрокинетический потенциал уменьшается. Значительное влияние оказывает величина рН среды, так как ионы Н + и ОН – обладают высокой адсорбционной способностью. Знак и значение дзета-потенциала широко используются для характеристики электрических свойств поверхностей при рассмотрении агрегативной устойчивости дисперсных систем.

В первом приближении принято считать, что устойчивость дисперсных систем определяется величиной электрокинетического z (дзета) потенциала. При добавлении к системам электролитов или ПАВ происходит изменение структуры ДЭС, изменение величины z – потенциала при неизменной величине поверхностного потенциала. Это изменение (уменьшение) наиболее значительно с ростом заряда противоиона при одинаковой концентрации электролита (рис.2.1).

Высокозарядные противоионы /Al +3 ,Fe +3 /, сложные органические ионы вследствие действия вандерваальсовых сил могут адсорбироваться сверхэквивалентно, т.е. в количествах, превышающих число зарядов на поверхности, накапливаясь в слое. В результате этого возможно изменение и величины, и знака электрокинетического потенциала. С такими явлениями часто встречаются при введении в дисперсные системы полиэлектролитов и коагулянтов.

В дисперсных системах при сближении одинаково заряженных частиц происходит их отталкивание, что не является чисто кулоновским, так как заряд поверхности полностью компенсирован зарядом противоионов. Силы отталкивания появляются при перекрывании диффузных ионных атмосфер. В тоже время между частицами действует вандерваальсово притяжение, состоящее из ориентационных, индукционных и дисперсионных сил. В определенных условиях эти силы соизмеримы с силами отталкивания. Полная энергия взаимодействия дисперсных частиц слагается из суммы энергий притяжения и отталкивания. Величина суммарной энергии частиц от расстояния между ними схематически показана на рис.2.2.

Рис.2.1. Зависимость величины z - потенциала от концентрации противоионов. На кривых указан заряд противоиона

Устойчивость дисперсных систем и коагуляция отражают непосредственно взаимодействие частиц дисперсной фазы между собой или с какими-либо макроповерхностями. В основе теории устойчивости лежит соотношение между силами притяжения и отталкивания частиц. Широкое признание получила теория устойчивости, впервые предложенная Б.В. Дерягиным и Л.Д. Ландау, учитывающая электростатическую составляющую расклинивающего давления (отталкивания) и его молекулярную составляющую (притяжение).

В упрощенном варианте общая энергия взаимодействия между двумя частицами, приходящаяся на единицу площади, равна

Е=Е пр +Е от. (2.1)

Рис.2.2. Зависимость энергии взаимодействия частиц (Е общ) от расстояния между ними (L ), Е общ =Е притяж +Е отталк

Каждую из этих составляющих можно выразить как функцию от расстояния между частицами

dЕ пр =Р пр dh, (2.2)

dE от =Р от dh, (2.3)

где Р пр – давление притяжения, т.е. молекулярная составляющая расклинивающего давления; Р от – давление отталкивания, в данном случае электростатическая составляющая расклинивающего давления.

Давление притяжения обусловлено обычно стремлением системы к уменьшению поверхностной энергии, его природа связана с ван-дер-ваальсовыми силами. Давление отталкивания обусловлено только электростатическими силами, поэтому

dР от = d , (2.4)

где - объемная плотность заряда в ЭДС, - электропотенциал двойного слоя.

Если частицы находятся на расстояниях, на которых взаимодействие не происходит, то ДЭС не перекрываются, и потенциалы в них практически равны нулю. При сближении частиц ДЭС перекрываются, в результате потенциалы значительно увеличиваются вплоть до 2 и силы отталкивания возрастают.

В области малых значений потенциалов электростатическая составляющая давления сильно зависит от значения потенциала, с ростом же потенциала эта зависимость становится менее заметной. Энергия отталкивания частиц возрастает с уменьшением расстояния h между ними по экспоненциальному закону.

Энергия притяжения частиц согласно упрощенному уравнению 2.5.обратно пропорциональна квадрату расстояния между ними.

Р пр = - , (2.5)

где n – число атомов в единице объема частицы; К – константа, зависящая от природы взаимодействующих фаз;

Энергия притяжения между частицами значительно медленнее уменьшается с расстоянием, чем энергия притяжения между молекулами (атомами). Отсюда следует, что частицы дисперсных систем взаимодействуют на более далеких расстояниях, чем молекулы.

Устойчивость дисперсных систем или скорость коагуляции зависит от знака и значения общей потенциальной энергии взаимодействия частиц. Положительная энергия отталкивания Е от с увеличением h уменьшается по экспоненциальному закону, а отрицательная Е пр обратно пропорциональна квадрату h. В результате на малых расстояниях (при h®0, Е от ®const, E пр ® ) и на больших расстояниях между частицами преобладает энергия притяжения, а на средних – энергия электростатического отталкивания.

Первичный минимум I (рис 2.2) отвечает непосредственному слипанию частиц, а вторичный минимум II – их притяжению через прослойку среды. Максимум, соответствующий средним расстояниям, характеризует потенциальный барьер, препятствующий слипанию частиц. Силы взаимодействия могут распространяться на расстояния до сотен нм, а максимальное значение энергии может превышать 10 -2 Дж/м 2 . Увеличению потенциального барьера способствует рост потенциала на поверхности частиц в области его малых значений. Уже при 20 мВ возникает потенциальный барьер, обеспечивающий агрегативную устойчивость дисперсных систем.

В различных отраслях промышленности встречаются дисперсные системы, содержащие разнородные частицы, отличающиеся химической природой, знаком и величиной поверхностного заряда, размерами. Агрегацию таких частиц (коагуляцию) называют гетерокоагуляцией. Это наиболее общий случай взаимодействия частиц при крашении, флотации, образовании донных отложений, осадков сточных вод. Термином взаимная коагуляция обозначают более частный случай – агрегацию разноименно заряженных частиц.

Процесс взаимной коагуляции широко используют на практике для разрушения агрегативной устойчивости дисперсных систем, например, при очистке сточных вод. Так, обработка сточных вод при определенных условиях солями алюминия или железа вызывает быструю коагуляцию взвешенных отрицательно заряженных веществ, взаимодействующих с положительно заряженными частицами гидроксидов алюминия и железа, образующимися при гидролизе солей.

Лиофильные коллоиды характеризуются интенсивным взаимодействием дисперсных частиц со средой и термодинамической устойчивостью системы. Решающая роль в стабилизации лиофильных коллоидов принадлежит сольватным слоям, формирующимся на поверхности дисперсной фазы в результате полимолекулярной адсорбции молекул растворителя. Способность сольватной оболочки препятствовать слипанию частиц объясняют наличием у нее сопротивления сдвигу, мешающему выдавливанию молекул среды из зазора между частицами, а также отсутствием заметного поверхностного натяжения на границе сольватного слоя и свободной фазы. Стабилизации дисперсных систем способствует введение в систему ПАВ. Неионные ПАВ, адсорбируясь на гидрофобных дисперсных частицах, превращают их в гидрофильные и увеличивают устойчивость золей.

Итак, возникновение электрокинетических явлений обусловлено диффузным строением двойного электрического слоя. Разноименность зарядов фаз приводит к перемещению противоионов вместе с жидкой фазой (электроосмос), а в случае дисперсной системы - к перемещению частиц дисперсной фазы (электрофорез). При этом действующая электрическая сила (равная произведению заряда на градиент потенциала) будет тем больше, чем больше зарядов диффузного слоя окажется в подвижной жидкости. Таким образом, электрокинетические явления должны быть развиты тем сильнее, чем больше подвижный заряд диффузного слоя и пропорциональный ему электрокинетический потенциал. Отсюда следует, что электрокинетический потенциал может служить мерой интенсивности электрокинетических явлений и в то же время мерой степени размытия диффузионной части двойного электрического слоя. Поэтому он может быть использован при рассмотрении свойств системы, связанных с существованием диффузного слоя, в частности, устойчивости гидрофобных золей.

19 Устойчивость дисперсных систем

По предложению Н. П. Пескова (1920) устойчивость дисперсных систем подразделяют на два вида: устойчивость к осаждению дисперсной фазы (седиментационная устойчивость) и устойчивость к агрегации ее частиц - агрегативная устойчивость . По отношению к агрегации дисперсные (гетерогенные) системы могут быть устойчивы термодинамически и кинетически. Термодинамически устойчивые дисперсные системы образуются в результате самопроизвольного диспергирования одной из фаз. По классификации П. А. Ребиндера, системы термодинамически устойчивые (образующиеся при самопроизвольном диспергировании) называются лиофильными. Термодинамически неустойчивые дисперсные системы получили название лиофобных систем, они обладают различной кинетической устойчивостью к агрегации частиц. Кинетически устойчивые дисперсные системы не могут быть получены с помощью самопроизвольного диспергирования, они устойчивы в течение определенного времени, иногда очень продолжительного.

Б.Д. Сумм предлагает различать 4 вида неустойчивости коллоидных систем:

1) Термодинамическая (агрегативная) неустойчивость проявляется в постепенном увеличении размеров дисперсных частиц или образования агрегатов из слипшихся частиц.

Эволюцию агрегативно неустойчивой дисперсной системы количественно характеризуют зависимостью размера частиц и их распределения по размерам от времени, а также временнóй зависимостью концентрации частиц.

Возможны два разных процесса уменьшения поверхностной энергии дисперсной системы:

Укрупнение дисперсных частиц, приводящее к увеличению их размера (ζ = const ). Этот процесс называют коалесценцией (слиянием). Он характерен для систем с жидкими или газообразными частицами.

Уменьшение удельной поверхностной энергии (ζ = const ). Укрупнение частиц может идти двумя путями. Один из них, называемый изотермической перегонкой, заключается в переносе вещества от мелких частиц к крупным, так как химический потенциал последних меньше (эффект Кельвина). В результате мелкие частицы постепенно растворяются (испаряются), а крупные растут. Второй путь, наиболее характерный и общий для дисперсных систем, представляет собой коагуляцию, заключающуюся в слипании (слиянии) частиц дисперсной фазы. В общем смысле под коагуляцией понимают потерю агрегативной устойчивости дисперсной системы. К процессу коагуляции относят также адгезионное взаимодействие частиц дисперсной фазы с макроповерхностями. Он заключается в образовании агрегатов из многих дисперсных частиц, разделенных тонкими прослойками дисперсионной среды.

Устойчивая свободнодисперсная система, в которой дисперсная фаза равномерно распределена по всему объему, может образоваться в результате конденсации из раствора. Потеря агрегативной устойчивости приводит к коагуляции, первый этап которой состоит в сближении частиц дисперсной фазы и взаимной фиксации на небольших расстояниях друг от друга. Между частицами остаются прослойки среды. В результате образуются или флокулы (флокуляция - образование агрегатов из нескольких частиц, разделенных прослойками среды), или коагуляционные структуры, отличающиеся подвижностью частиц относительно друг друга под действием сравнительно небольших нагрузок (места контактов разделены прослойками среды). Обратный процесс образования устойчивой свободнодисперсной системы из осадка или геля (структурированной дисперсной системы) называется пептизацией. Более глубокий процесс коагуляции приводит к разрушению прослоек среды и непосредственному контакту частиц. В итоге или образуются жесткие агрегаты из твердых частиц, или происходит полное слияние их в системах с жидкой или газообразной дисперсной фазой (коалесценция). В концентрированных системах образуются жесткие объемные конденсационные структуры твердых тел, которые снова можно превратить в свободнодисперсную систему только с помощью диспергирования (принудительного).

2) Седиментационная неустойчивость. Вызывается различием плотностей веществ дисперсной фазы (ρ d ) и дисперсионной среды (ρ o ). Это различие приводит к постепенному оседанию (седиментации) более крупных частиц (если ρ d > ρ o ) или их всплыванию

(если ρ d < ρ o ).

Размер дисперсных частиц влияет на агрегативную и седиментационную устойчивости противоположным образом. Чем выше степень дисперсности (меньше размер частиц), тем сильнее проявляется их агрегативная неустойчивость, однако растет их устойчивость по отношению к седиментации.

3) Фазовая неустойчивость. Имеется в виду изменение структуры частиц при сохранении их размеров. Например, при синтезе коллоидных растворов металлов, оксидов и гидроксидов дисперсные частицы обычно аморфны, а со временем внутри частиц может происходить энергетически выгодный процесс кристаллизации.

4) Поверхностная неустойчивость. Ее причины различны. Например, ПАВ с большой молекулярной массой (белки) медленно диффундируют из объема дисперсионной среды на поверхность частиц и со временем образуют адсорбционный слой. Другой возможный механизм – растворение вещества дисперсных частиц в дисперсионной среде. Оно обусловливает несколько процессов:

Изменение химического состава раствора вблизи поверхности частиц и изменение строения ДЭС;

Изменение микрорельефа твердой поверхности и, как следствие, изменение краевых углов смачивания.

Анализ причин и форм неустойчивости дисперсных систем приводит к следующему принципиальному заключению: неравновесность вызывает эволюцию дисперсных систем .

Таким образом, характеристики дисперсных систем могут существенно изменяться во времени.

Основная проблема теории устойчивости дисперсных систем заключается в определении конкретных причин и механизма объединения отдельных дисперсных частиц в более крупные агрегаты и в выяснении факторов, которые препятствуют их агрегированию.

Теорию устойчивости гидрофобных золей детально разработали Б. Дерягин и Л. Ландау и независимо Э. Фервей и Т. Овербек (теория ДЛФО ). По этой теории на диспресные частицы действуют две силы – сила отталкивания (f e ), обусловленная электростатической и термодинамической составляющей (расклинивающее давление) и сила притяжения (f d |) (Ван-дер-Ваальсовские силы). В зависимости от соотношения этих сил возможны два варианта поведения коллоидного раствора:

1) Если преобладает сила притяжения (|f d | >|f e |), то дисперсные частицы сближаются, между ними возникает контакт, и они объединяются в более крупный агрегат (коллоидный

«димер»). Таким образом, в этом случае элементарный акт процесса коагуляции может состояться.

2) Если преобладает электростатическое отталкивание (|f d | <|f e |), то частицы могут не вступать в непосредственное соприкосновение, и коагуляция золя не происходит.

Таким образом, в качестве основного фактора термодинамической устойчивости дисперсной системы в теории ДЛФО принимают электростатическое (кулоновское) отталкивание дисперсных частиц.

Для расчета условий коагуляции вводятся дополнительные концепции:

1) Частицы имеют призматическую форму и разделены плоскопараллельным зазором шириной h (см. рис. 11).

2) Частицы перемещаются только в направлении, перпендикулярном зазору. Броуновское движение исключается.

Для расчета условий сопоставляются не силы притяжения, а соответствующие им энергии взаимодействия (U d , U e ).

A 12*

12 h 2

где A 1 * ,2 – сложная константа Гамакера; знак «–» указывает на взаимное притяжение.

Энергия электростатического взаимодействия (U e ) создается вследствие перекрывания диффузных слоев противоионов в тонкой пленке раствора электролита в зазоре между частицами.

U e , которая зависит от толщины пленки, создает в пленке дополнительное давление – расклинивающее давление (Π) . Π – это термодинамический параметр тонкой жидкой пленки в пространстве между частицами:

dW f , (19.2) dh

где W f – это работа, которую нужно затратить для увеличения поверхности тонкой пленки на единицу площади при постоянной температуре.

W f 2 W f , (19.3)

где W f – это дополнительная энергия пленки, которую нужно затратить для сближения поверхностных слоев ABB′A′ и CDD′C′.

Рисунок 11 - Возникновение расклинивающего давления в плоской тонкой пенной пленке с перекрыванием поверхностных слоев (h < 2δ)

По физическому смыслу величину W f можно рассматривать как энергетическое определение поверхностного натяжения тонкой пленки.

Физический смысл величины Π – это избыточное давление в тонкой пленке по сравнению с гидростатическим давлением в большом объеме жидкости.

(h ) p f p o , (19.4)

где p f – давление в тонкой пленке.

Положительное расклинивающее давление препятствует утоньшению пленки! Возникновение Π связано с поверхностными силами разной природы

(электрическими, магнитными, молекулярными). Для коллоидной химии особенно важны первые и последние.

При толщине жидкой пленки 1 мкм Π может

достигать 400 Па, а 0,04 мкм –

1,88∙104 Па.

64 Co RT

æh )

где 1/æ = δ – толщина ионной атмосферы.

Не обязательно запоминать формулы! Главное уяснить, что U e и U d имеют разные знаки и по-разному зависят от толщины разделяющей пленки h :

Рисунок 12 – Изменение энергии (U) тонкой пленки электролита в зависимости от ее толщины (h)

Как видно из рисунка, U e изменяется по экспоненциальному закону (пропорциональна e - æh ), U d – по степенному (пропорциональна 1/h 2 ). Поэтому на малых расстояниях будет преобладать притяжение (при h → 0 U d → ∞). На больших расстояниях также преобладает притяжение, т. к. степенная функция убывает медленнее, чем экспонента. На средних расстояниях возможен локальный (дальний) максимум. Он соответствует энергетическому (потенциальному) барьеру, который препятствует сближению частиц и их коагуляции.

Анализ уравнения и графика позволяет выделить три случая поведения дисперсной системы в зависимости от соотношения высоты энергетического барьера U M , глубины потенциальной ямы U N на больших расстояниях, и на малых расстояниях энергии тепловых колебаний k Б T .

Рисунок 13 – Изменение энергии (U) тонкой пленки электролита в зависимости от расстояния

Кривая 1 на рисунке 13 отвечает такому состоянию дисперсной системы, когда при любом расстоянии между частицами преобладает энергия притяжения над энергией отталкивания. Не меняет этого соотношения и тепловое движение частиц. При таком состоянии дисперсной системы наблюдается быстрая коагуляция с образованием агрегатов; в системах с жидкой и газообразной дисперсными фазами происходит коалесценция. Кривая 2 указывает на наличие достаточно высокого потенциального барьера и вторичного

Учебное пособие предназначено для студентов нехимических специальностей высших учебных заведений. Оно может служить пособием для лиц, самостоятельно изучающих основы химии, и для учащихся химических техникумов и старших классов средней школы.

Легендарный учебник, переведенный на многие языки стран Европы, Азии, Африки и выпущенный общим тиражом свыше 5 миллионов экземпляров.

При изготовлении файла, использован сайт http://alnam.ru/book_chem.php

Книга:

<<< Назад
Вперед >>>

Как указывалось в § 106, качественная особенность дисперсных систем состоит в их агрегативной неустойчивости.

Предотвращение агрегации первичных дисперсных частиц возможно в результате действия трех факторов устойчивости дисперсных систем: 1) кинетического, 2) электрического и 3) структурно-механического.

Необходимым условием слипания двух частиц дисперсной фазы является их сближение, достаточное для проявления сил притяжения. Если частота столкновений коллоидных частиц мала, то дисперсная система может быть устойчивой (кинетический фактор устойчивости). Это может иметь место при очень малой концентрации дисперсных частиц (например, в некоторых аэрозолях) или при очень большой вязкости дисперсионной среды (например, в дисперсных системах типа T 1 -T 2).

Рис. 102. Схема перекрывания ионных атмосфер двух коллоидных частиц.

Большинство устойчивых дисперсных систем кроме дисперсной фазы и дисперсионной среды содержат еще 3-й компонент, являющийся стабилизатором дисперсности. Стабилизатором могут быть как ионы, так и молекулы, в связи с чем различают два механизма стабилизации дисперсных систем: электрический и молекулярно-адсорбционный (стр. 324),

Электрическая стабилизация дисперсных систем связана с возникновением двойного электрического слоя на границе раздела фаз. Такая стабилизация имеет основное значение для получения устойчивых лиозолей и суспензий в полярной среде, например в воде. В любом гидролизе все коллоидные частицы имеют одинаковый знак заряда. Однако коллоидная мицелла в целом электронейтральна в результате образования двойного электрического слоя. Поэтому электростатическое отталкивание между коллоидными частицами (электрический фактор устойчивости) возникает только при достаточном их сближении, когда происходит перекрывание их ионных атмосфер (рис. 102). Потенциальная энергия электростатического отталкивания тем больше, чем больше перекрывание диффузных частей двойного электрического слоя коллоидных частиц, т. е. чем меньше расстояние (x) между ними и чем больше толщина двойного электрического слоя.

Кроме электростатического отталкивания между коллоидными частицами, как и между молекулами любого вещества, действуют межмолекулярные силы притяжения, среди которых наибольшую роль играют дисперсионные силы. Действующие между отдельными молекулами дисперсионные силы быстро убывают с увеличением расстояния между ними. Но взаимодействие коллоидных частиц обусловлено суммированием дисперсионных сил притяжения между всеми молекулами, находящимися на поверхности контакта коллоидных частиц. Поэтому силы притяжения между коллоидными частицами убывают медленнее и проявляются на больших расстояниях, чем в случае отдельных молекул.

Потенциальная энергия взаимодействия (U) между коллоидными частицами представляет собой алгебраическую сумму потенциальной энергии электростатического отталкивания (U э) и потенциальной энергии дисперсионного притяжения (U д) между ними:

Если U э > U д (по абсолютной величине), то отталкивание преобладает над притяжением и дисперсная система устойчива.

Рис. 103. Потенциальная энергия взаимодействия между двумя одинаково заряженными частицами: 1 - электрическое отталкивание (U э) 2 - дисперсионное притяжение (U д); 3 - результирующая энергия взаимодействия (U); 4 - то же, но при более крутом падении кривой 1; х - расстояние между частицами; U макс - потенциальный барьер взаимодействия дисперсных частиц.

Если Если U э < U д, то происходит слипание сталкивающихся при броуновском движении коллоидных частиц в более крупные агрегаты и седиментация последних. Коллоидный раствор коагулирует, т. е. разделяется на коагулят (осадок) и дисперсионную среду.

В этом состоит сущность теории электрической стабилизации и коагуляции дисперсных систем, развитой впервые Б. В. Дерягиным (1937), а затем Л. Д. Ландау и голландскими учеными Фервеем и Овербеком (1948 г.); по первым буквам фамилий авторов ее называют теорией ДЛФО.

На рис. 103 приведены зависимости величин U д и U э от расстояния между коллоидными частицами. При этом, как принято в физике, потенциальной энергии притяжения приписывается знак минус, а отталкивания - знак плюс. Как видно, результирующая энергия взаимодействия (кривая 3 на рис. 103) приводит к притяжению (U<0) на очень малых и отталкиванию (U>0) на больших расстояниях между частицами. Решающее значение для устойчивости дисперсных систем имеет величина потенциального барьера отталкивания U макс, которая, в свою очередь, зависит от хода кривых U д и U э. При больших значениях этого барьера коллоидная система устойчива. Слипание коллоидных частиц возможно лишь при достаточном их сближении. Это требует преодоления потенциального барьера отталкивания. При некоторых небольших положительных значениях U макс (кривая 3) преодолеть его могут лишь немногие коллоидные частицы с достаточно большой кинетической энергией. Это соответствует стадии медленной коагуляции, когда только небольшая часть соударений коллоидных частиц приводит к их слипанию. При медленной коагуляции со временем происходит некоторое уменьшение общего числа коллоидных частиц в результате образования агрегатов из первичных частиц, но коагулят не выпадает. Подобную коагуляций, не сопровождающуюся видимым изменением коллоидного раствора, называют скрытой коагуляцией.

При дальнейшем уменьшении потенциального барьера скорость коагуляции, характеризуемая изменением числа частиц в единицу времени, возрастает. Наконец, если потенциальный барьер переходит из области отталкивания в область притяжения (кривая 4 на рис. 103), наступает быстрая коагуляция, когда каждое соударение коллоидных частиц приводит к их слипанию; в коллоидном растворе образуется осадок - коагулят, происходит явная коагуляция.

Потенциальный барьер отталкивания (U макс) возникает в результате суммирования сил отталкивания и притяжения, действующих между коллоидными частицами. Поэтому все факторы, влияющие на ход кривых 1 и 2 (рис. 103), приводят к изменению как величины U макс, так и положения максимума (т. е. расстояния X, соответствующего U макс).

Значительное уменьшение U макс происходит в результате изменения потенциальной энергии электростатического отталкивания (т. е. хода кривой 1), вызванного добавлением электролитов к коллоидному раствору. С увеличением концентрации любого электролита происходит перестройка двойного электрического слоя, окружающего коллоидные частицы: все большая часть противо-ионов вытесняется из диффузной в адсорбционную часть двойного Электрического слоя. Толщина диффузной части двойного электрического слоя (слой 4 на рис. 100), а вместе с ней и всего двойного электрического слоя (слой 2 на рис. 100) уменьшается. Поэтому кривая потенциальной энергии электростатического отталкивания снижается более круто, чем показанная на рис. 103 кривая 1. В результате этого потенциальный барьер отталкивания (U макс) уменьшается и смещается в сторону меньшего расстояния между коллоидными частицами. Когда двойной электрический слой сжимается до толщины адсорбционного слоя (слой 8 на рис. 100), то вся кривая взаимодействия дисперсных частиц оказывается в области притяжения (кривая 4 на рис. 103), наступает быстрая коагуляция. Такое изменение устойчивости коллоидного раствора происходит при добавлении любого электролита.

Коагулирующее действие электролитов характеризуют порогом коагуляции, т. е. наименьшей концентрацией электролита, вызывающей коагуляцию. В зависимости от природы электролита и коллоидного раствора порог коагуляции изменяется в пределах от 10 -5 до 0,1 моль в литре золя. Наиболее существенное влияние на порог коагуляции оказывает заряд коагулирующего иона электролита, т. е. иона, заряд которого противоположен по знаку заряду коллоидной частицы.

Многозарядные противоионы электролита имеют повышенную адсорбционную способность по сравнению с однозарядными и проникают в адсорбционную часть двойного электрического слоя в больших количествах. При этом порог коагуляции уменьшается не пропорционально заряду противоиона, а значительно быстрее.

Блестящим подтверждением теории ДЛФО явился расчет Б. В. Дерягиным и Л. Д. Ландау (1941 г.) соотношения значений порогов коагуляции вызываемой электролитами, содержащими ионы с разной величиной заряда. Оказалось, что порог коагуляции обратно пропорционален шестой степени заряда коагулирующего иона. Следовательно, значения порогов коагуляции для одно-, двух-, трех- и четырехзарядных ионов должны относиться, как

что близко к соотношениям концентраций электролитов, которые наблюдались при коагуляции разнообразных гидрозолей. Сказанное иллюстрируют данные табл. 22, где приведены эквивалентные концентрации электролитов C к, вызывающие коагуляцию гидрозоля оксида мышьяка(III).

Таблица 22. Пороги коагуляции (C к) отрицательно заряженного золя As 2 O 3 электролитами

Молекулярно-адсорбционная стабилизация дисперсных систем играет большую роль в устойчивости дисперсий как в водной, так и в неводных средах. Дисперсные системы в неводных средах в принципе менее устойчивы, чем в водной среде. В неполярной и не содержащей воды дисперсионной среде частицы дисперсной фазы лишены электрического заряда. Электрический фактор стабилизации отсутствует. Между дисперсными частицами действуют только силы взаимного притяжения. Ослабление этих сил, приводящее к стабилизации дисперсных систем, может происходить в результате образования вокруг коллоидных частиц адсорбционных слоев из молекул дисперсионной среды и растворенных в ней веществ. Такие слои ослабляют взаимное притяжение частиц дисперсной фазы и создают механическое препятствие их сближению.

Стабилизация дисперсных систем за счет сольватации дисперсной фазы молекулами дисперсионной среды возможна как в полярных, так и в неполярных средах. Так, гидратация частиц глины и кремниевой кислоты имеет существенное значение для устойчивости суспензий глин и золя кремниевой кислоты в водной среде.

Однако стабилизация дисперсных систем значительно более эффективна при добавлений к ним поверхностно-активных веществ (ПАВ) и высокомолекулярных соединений, адсорбирующихся на границе раздела фаз. Адсорбционные слои ПАВ и высокомолекулярных соединений, обладая упругостью и механической прочностью, предотвращают слипание дисперсных частиц. Образование таких молекулярно-адсорбционных твердообразных поверхностных слоев П. А. Ребиндер назвал структурно-механическим фактором стабилизации дисперсных систем. Этот механизм стабилизации играет основную роль при получении предельно устойчивых высококонцентрированных пен, эмульсий, коллоидных растворов и суспензий не только в неводных, но и в водных средах. Для структурно-механической стабилизации дисперсий в водной среде применяют мыла щелочных металлов, белки, крахмал, а в неводных средах - мыла щелочноземельных металлов, смолы, каучуки. Такие вещества называют защитными коллоидами.

<<< Назад
Вперед >>>
Изменился ли подход к проблеме устойчивости дисперсных систем на современном
этапе развития коллоидной химии?
Б.Д. Сумм предлагает различать 4 вида неустойчивости коллоидных систем:
(Давайте вспомним: под устойчивостью лиофобных дисперсных систем понимается их способность сопротивляться протеканию процессов, ведущих к изменению их дисперсности, характера распределения частиц по размерам, а также в объеме дисперсионной среды.)
1) Термодинамическая (агрегативная) неустойчивость проявляется в постепенном увеличении размеров дисперсных частиц или образования агрегатов из слипшихся частиц.
Эволюцию агрегативно неустойчивой дисперсной системы количественно характеризуют зависимостью размера частиц и их распределения по размерам от времени, а также временнóй зависимостью концентрации частиц.
Избыточная поверхностная энергия A
s
дисперсной системы описывается уравнением:
d
m
K
A
d
d
s
1




, где K – коэффициент формы; σ – удельная поверхностная энергия; ρ
d
– плотность вещества дисперсной фазы, m
d
– масса дисперсной фазы.
Это уравнение показывает, что возможны два разных процесса уменьшения поверхностной энергии дисперсной системы:
-Укрупнение дисперсных частиц, приводящее к увеличению их размера (σ = const ). Этот процесс называют коалесценцией (слиянием). Он характерен для систем с жидкими или газообразными частицами.
-Уменьшение удельной поверхностной энергии (поверхностного натяжения, d = const ).
Укрупнение частиц может идти двумя путями. Один из них, называемый изотермической
перегонкой, заключается в переносе вещества от мелких частиц к крупным, так как химический потенциалпоследних меньше (эффект Кельвина). В результате мелкие частицы постепенно растворяются (испаряются), а крупные растут. Второй путь, наиболее характерный и общий для дисперсных систем, представляет собой коагуляцию, заключающуюся в слипании (слиянии) частиц дисперсной фазы. В общем смысле под коагуляцией понимают потерю агрегативной устойчивости дисперсной системы. Кпроцессу коагуляции относят также адгезионное взаимодействие частиц дисперсной фазы с макроповерхностями. Он заключается в образовании агрегатов из многих дисперсных частиц, разделенных тонкими прослойками дисперсионной среды.
Устойчивая свободнодисперсная система, в которой дисперсная фаза равномерно распределена по всему объему, может образоваться в результате конденсации израствора. Потеря агрегативной устойчивости приводит к коагуляции, первый этап которой состоит в сближении частиц дисперсной фазы и взаимной фиксации на небольших расстояниях друг от друга. Между частицами остаются прослойки среды. В результате образуются или флокулы (флокуляция - образование агрегатов из нескольких частиц, разделенных прослойками среды), или коагуляционные структуры , отличающиеся подвижностью частиц относительно друг друга под

действием сравнительно небольших нагрузок (места контактов разделены прослойками среды).
Обратный процесс образования устойчивой свободнодисперсной системы из осадка или геля
(структурированной дисперсной системы) называется пептизацией. Более глубокий процесс коагуляции приводит к разрушению прослоек среды и непосредственному контакту частиц. В итоге или образуются жесткие агрегаты из твердых частиц, или происходит полное слияние их в системах с жидкой или газообразной дисперсной фазой (коалесценция). В концентрированных системах образуются жесткие объемные конденсационные структуры твердых тел, которые снова можно превратить в свободнодисперсную систему только с помощью диспергирования
(принудительного).
2) Седиментационная неустойчивость. Вызывается различием плотностей веществ дисперсной фазы и дисперсионной среды (ρ
o
). Это различие приводит к постепенному оседанию
(седиментации) более крупных частиц (если ρ
d
> ρ
o
) или их всплыванию (если ρ
d
ρ
o
).
Размер дисперсных частиц влияет на агрегативную и седиментационную устойчивости противоположным образом. Чем выше степень дисперсности (меньше размер частиц), тем сильнее проявляется их агрегативная неустойчивость, однако растет их устойчивость по отношению к седиментации.
3) Фазовая неустойчивость. Имеется в виду изменение структуры частиц при сохранении их размеров. Например, при синтезе коллоидных растворов металлов, оксидов и гидроксидов дисперсные частицы обычно аморфны, а со временем внутри частиц может происходить энергетически выгодный процесс кристаллизации.
4) Поверхностная неустойчивость. Ее причины различны. Например, ПАВ с большой молекулярной массой (белки) медленно диффундируют из объема дисперсионной среды на поверхность частиц и со временем образуют адсорбционный слой. Другой возможный механизм – растворение вещества дисперсных частиц в дисперсионной среде. Оно обусловливает несколько процессов:
-изменение химического состава раствора вблизи поверхности частиц и изменение строения ДЭС;
-изменение микрорельефа твердой поверхности и, как следствие, изменение краевых углов смачивания.
Анализ причин и форм неустойчивости дисперсных систем приводит к следующему принципиальному заключению: неравновесность вызывает эволюцию дисперсных систем . Таким образом, характеристики дисперсных систем могут существенно изменяться во времени.
Основная проблема теории устойчивости дисперсных систем заключается в определении конкретных причин и механизма объединения отдельных дисперсных частиц в более крупные агрегаты и в выяснении факторов, которые препятствуют их агрегированию.
Факторы агрегативной устойчивости
Различают следующие термодинамические и кинетические факторы устойчивости дисперсных систем.
1. Электростатический фактор заключается в уменьшении мёжфазного натяжения вследствие возникновения двойного электрического слоя на поверхности частиц. Появление электрического потенциала на межфазной поверхности обусловливается поверхностной электролитической диссоциацией или адсорбцией электролитов.
2.Адсорбционно-сольватный фактор состоит в уменьшении межфазного натяжения при взаимодействии частиц дисперсной фазы со средой в соответствии с уравнением Дюпре для работы когезии и адсорбционным уравнением Гиббса.
3 Энтропийный фактор . Он является дополнением к первым двум факторам и действует в ультрамикрогетерогенных системах, для дисперсной фазы которых характерно броуновское движение. Сущность его состоит стремлении дисперсной фазы к равномерному распределению по объему системы.
4. Структурно-механический фактор является кинетическим. Заключается в том, что на поверхности частиц имеются пленки, обладающие упругостью и механической прочностью , разрушение которых требует опредёленной энергии и времени.
5. Гидродинамический фактор снижает скорость коагуляции - благодаря изменению вязкости среды и плотности дисперсной фазы и дисперсионной среды.
6. Смешанные факторы наиболее характерны для реальных систем. Особенно высокая устойчивость наблюдается при совокупности действия термодинамических и кинетических

факторов, когда наряду со снижением межфазного натяжения проявляются структурно- механические свойства межчастичных прослоек.
Необходимо иметь в виду, что каждому фактору устойчивости соответствует специфический метод его нейтрализации. Например, действие электростатического фактора значительно снижается при введении в систему электролитов, которые сжимают двойной электрический слой. Сольватация при адсорбционно-сольватном факторе может быть исключена лиофобизацией частиц дисперсной фазы с помощью адсорбции соответствующих веществ.
Действие структурно-механического фактора можно снять с помощью веществ, разжижающих и растворяющих упругие структурированные слои на поверхности частиц.
Теории коагуляции электролитами
Коагуляция коллоидных систем может происходить под влиянием ряда факторов старения системы, изменения концентрации дисперсной фазы, изменения температуры, механических воздействий, света и т. д. Однако наиболее важное теоретическое и практическое значение имеет коагуляция при добавлении электролитов
Коагуляцию способны вызывать все электролиты. Не представляют исключения и электролиты, являющиеся стабилизаторами. Существенно лишь, чтобы концентрация таких электролитов в системе была достаточно велика для того, чтобы сжать двойной электрический слой и этим понизить энергетический барьер, препятствующий слипанию частиц при их столкновении. Для начала коагуляции необходимо превысить некоторую минимальную концентрацию электролита в золе. Эта величина (γ), получившая название порога коагуляции
обычно выражаемая в ммоль/л или мг-экв/л, очевидно, отвечает сжатию двойного электрического слоя до той степени, когда он перестает служить энергетическим барьером, предохраняющим частицы от слипания под действием молекулярных сил притяжения. В 1882 г Шульце установил, что коагулирующая сила иона тем больше , чем больше ёго валентность. Эта зависимость подтверждена Гарди и получила название правило Шульце-Гарди. Дальнейшие опыты показали, что коагулирующая сила ионов одной и той же валентности возрастает с увеличением радиуса иона. Иначе говоря, катионы или анионы одной и той же валентности по своему коагулирующему действию располагаются в обычный лиотропный ряд.
В своих исследованиях Гарди полагал, что коагуляция должна наступать в изоэлектрической точке, когда с-потенциал частиц равен нулю. Однако позднее было установлено, что коагуляция - обычно наступает не в изоэлектрической точке, а при достижении некоторого критического ζ-потенциала. Существенно, что значение критического потенциала в общем оказалось мало зависящим от вида электролита, с помощью которого он был достигнут. Для многих систем этот потенциал довольно близок к 30 мВ. Иногда с понижением ζ-потенциала золи не только не коагулируют, но увеличивают свою устойчивость и, наоборот, повышение потенциала подчас сопровождается коагуляцией.
Теория ДЛФО
Первые количественные расчеты были произведены. В. В. Дерягиным в конце 30-х годов и затем завершены в работе В. В. Дерягина и Л. Д.Ландау (1941 г.). Аналогичный подход к изучению устойчивости коллоидных систем в дальнейшем был развит и в работах голландских исследователей Фервея и Овербека. По начальным буквам основных авторов возникшей физической теории коагуляции эту теорию теперь часто называют теорией ДЛФО. Силы взаимодействия, проявляющиеся между мицеллами коллоидной системы, имеют сложную природу и в основном определяются следующими видами:
Силы притяжения , обусловленные Ван-дер-Ваальсовскими силами притяжения между агрегатами мицелл.
Силы отталкивания.
1)
Термодинамическая составляющая сил отталкивания, обусловленная термодинамической устойчивостью тонких жидких пленок на границе фаз. Эта составляющая играет большую роль для лиофильных коллоидных систем. В основе термодинамики агрегативной устойчивости лежит представление о расклинивающем давлении, введенное Б. В. Дерягиным в
1935 г. Расклинивающее давление возникает при сильном уменьшении толщины пленки в результате взаимодействия сближающихся поверхностных слоев. Пленкой называют часть системы, находящуюся между двумя межфазными поверхностями. Расклинивающее давление является избыточным по сравнению с давлением в той фазе, частью которой является

рассматриваемая пленка. Расклинивающее давление является суммарным параметром, учитывающим как силы отталкивания, так и силы притяжения , действующие в пленке. В соответствии с этим расклинивающее давление может быть положительным (отталкивание поверхностных слоев) и отрицательным (притяжение поверхностных слоев).
2) Электростатическая составляющая сил отталкивания. Для лиофобных систем силы отталкивания определяются только ионно-электростатическим отталкиванием одноименно заряженных диффузных слоев мицелл.
В зависимости от соотношения этих сил возможны два варианта поведения коллоидного раствора:
1) Если преобладает сила притяжения (|f
d
| >|f
e
|), то дисперсные частицы сближаются, между ними возникает контакт, и они объединяются в более крупный агрегат (коллоидный «димер»).
Таким образом, в этом случае элементарный акт процесса коагуляции может состояться.
2) Если преобладает электростатическое отталкивание (|f
d
| f
e
|), то частицы могут не вступать в непосредственное соприкосновение, и коагуляция золя не происходит.
Таким образом, в качестве основного фактора термодинамической устойчивости дисперсной системы в теории ДЛФО принимают электростатическое (кулоновское) отталкивание дисперсных частиц.
Для расчета условий коагуляции вводятся дополнительные концепции:
1) Частицы имеют призматическую форму и разделены плоскопараллельным зазором шириной h (см. рис.).
2) Частицы перемещаются только в направлении, перпендикулярном зазору. Броуновское движение исключается.
Для расчета условий сопоставляются не силы притяжения, а соответствующие им энергии взаимодействия (U
d
, U
e
).
2
*
12 12 h
A
U
d



где
*
2
,
1
A
– сложная константа Гамакера; знак «–» указывает на взаимное притяжение.
Энергия электростатического взаимодействия (U
e
) создается вследствие перекрывания диффузных слоев противоионов в тонкой пленке раствора электролита в зазоре между частицами.
U
e
, которая зависит от толщины пленки, создает в пленке дополнительное давление –
расклинивающее давление (Π) . Π – это термодинамический параметр тонкой жидкой пленки в пространстве между частицами:
dh
dW
f



, где W
f
– это работа, которую нужно затратить для увеличения поверхности тонкой пленки на единицу площади при постоянной температуре.
f
f
W
W




2
, где ΔW
f
– это дополнительная энергия пленки, которую нужно затратить для сближения поверхностных слоев ABB′A′ и CDD′C′.
Рисунок 34 – Возникновение расклинивающего давления в плоской тонкой пенной пленке с перекрыванием поверхностных слоев (h По физическому смыслу величину W
f
можно рассматривать как энергетическое определение поверхностного натяжения тонкой пленки.
Физический смысл величины Π – это избыточное давление в тонкой пленке по сравнению с гидростатическим давлением в большом объеме жидкости.

o
f
p
p
h



(
, где p
f
– давление в тонкой пленке.
Положительное расклинивающее давление препятствует утоньшению пленки!
Возникновение Π связано с поверхностными силами разной природы (электрическими, магнитными, молекулярными). Для коллоидной химии особенно важны первые и последние.
При толщине жидкой пленки 1 мкм Π может достигать 400 Па, а 0,04 мкм – 1,88∙10 4
Па.
Необходимо уяснить, что U
e
и U
d
имеют разные знаки и по-разному зависят от толщины разделяющей пленки h :
Рисунок 35 – Изменение энергии (U) тонкой пленки электролита в зависимости от ее толщины (h)
Как видно из рисунка, U
e
изменяется по экспоненциальному закону (пропорциональна e
-
æh
), U
d
– по степенному (пропорциональна 1/h
2
). Поэтому на малых расстояниях будет преобладать притяжение (при h → 0 U
d
→ ∞). На больших расстояниях также преобладает притяжение, т. к. степенная функция убывает медленнее, чем экспонента. На средних расстояниях возможен локальный (дальний) максимум. Он соответствует энергетическому (потенциальному) барьеру, который препятствует сближению частиц и их коагуляции.
Анализ уравнения и графика позволяет выделить три случая поведения дисперсной системы в зависимости от соотношения высоты энергетического барьера U
M
, глубины потенциальной ямы U
N
на больших расстояниях, и на малых расстояниях энергии тепловых колебаний kT .
Устойчивость коллоидных систем определяется балансом сил отталкивания и притяжения.
При рассмотрении коагуляции коллоидных систем следует различат два предельных случая :
1) нейтрализационную коагуляцию когда потеря устойчивости происходит в результате разряжения коллоидных частиц и уменьшения их φ-потенциала Нейтрализационная коагуляция наблюдается у золей со слабо заряженными частицами, обладающими сравнительно низкими значениями φ-потенциала. В этом случае коагуляция происходит у золей при снижении электрического заряда частиц из-за уменьшения адсорбции потенциалопределяющих ионов. В результате уменьшения заряда электрические силы отталкивания между частицами ослабевают, частицы при сближении выпадают в осадок.
2) концентрационную коагуляцию при которой потеря устойчивости связана не с падением
φ-потенциала, а вызвана сжатием диффузного двойного слоя.
Концентрационная коагуляция наблюдается обычно у золей с сильно заряженными частицами при увеличении концентрации индифферентного электролита в системе. Это обстоятельство позволяет в первом приближении вовсе не учитывать возможное изменение φ- потенциала при различного рода адсорбционных или десорбционных явлениях. Единственной причиной коагуляции системы в этом случае является, согласно теории ДЛФО, чисто электростатический эффект сжатия двойного электрического слоя. В предельном случае потенциал поверхности -φ-потенциал - при коагуляции может сохранять достаточно высокие значения (более 100 мВ). При этом соответствие между с-потенциалом, который при увеличении концентрации раствора электролита может значительно падать, и φ-потенциалом теряется.
Теряется также связь между устойчивостью системы и - и φ- и ζ-потенциалами. Таким образом, становится понятным, почему ζ-потенциал далеко не всегда можёт являться критерием устойчивости золя.
Теория показывает, что по мере безграничного возрастания φ-потенциала обеих поверхностей сила электростатического отталкивания между частицами любой формы не

возрастает безгранично, а стремится к конечному пределу, подходя к нему уже при значениях потенциала поверхности, превышающих 100 мВ. Вследствие этого свойства, как бы насыщения сил, можно говорить о силе взаимодействия предельно заряженных поверхностей как о величине, не зависящей от точных значений потенциала поверхности. Этот вывод объясняется тем , что по мере роста φ-потенциала увеличивается притяжение противоионов к поверхности частицы. Таким образом, параллельно с ростом заряда внутренней обкладки двойного электрического слоя и потенциала поверхности усиливается и экранирование внешнего поля этой обкладки противоионами. Поэтому дальнейший рост напряженности электрического поля в периферийных частях ионных атмосфер и сил взаимодействия обеих частиц прекращается. Таким образом, если коллоидные частицы заряжены достаточно сильно, то их взаимодействие зависит только от заряда противоионов, экранирующих действие внутренней обкладки двойного слоя и обусловливающих его толщину. При прибавлении к системе индифферентного электролита происходит сжатие диффузной части двойного электрического слоя и толщина ионных атмосфер уменьшается.
Одновременно также в результате сжатия ионного слоя увеличивается глубина вторичного потенциального минимума, что приводит к возрастанию вероятности дальней агрегации.
Рисунок 36 – Изменение вида результирующих кривых, характеризующих взаимодействие частиц, при увеличении содержания электролита
Энергетический барьер на диаграмме энергия взаимодействия – расстояние между коллоидными частицами исчезает когда достигнут порог коагуляции
 
6 6
2 5
z
e
A
kT
C



где С – константа зависящая от отношения числа зарядов катиона и аниона, е – заряд электрона, z – валентность противоиона, А – постоянная притяжения.
Минимальная концентрация электролита, которая вызывает начало процесса коагуляции называется порогом коагуляции

к
(моль/дм
3
). Она является постоянной величиной для данной пары золь–электролит при одинаковых внешних условиях (температура, давление и т. п.). Иногда используют величину, обратную порогу коагуляции, – коагулирующую способность электролита
V
к
В случае сильного заряда поверхности

к
обратно пропорциональна заряду противоиона
(ze )
6
. Этот вывод дает теоретическое обоснование правила Шульце-Гарди. При сильном заряде поверхности снижение энергетического барьера вызывает и сжатие диффузного слоя противоионов при введении электролитов в достаточно высокой концентрации. Напомним, что такой случай называют концентрационной коагуляцией.

Основным методом очистки природных и сточных вод от мелкодисперсных, эмульгированных, коллоидных и окрашенных примесей (1 и 2 группы) является коагуляция и флокуляция. Методы основаны на агрегировании частиц дисперсной фазы с последующим их удалением из воды механическим отстаиванием.

Эффективность и экономичность процессов коагуляционной очистки сточных вод определяется устойчивостью дисперсной системы, которая зависит от ряда факторов: степени дисперсности, характера поверхности частиц, плотности частиц, величины электрокинетического потенциала, концентрации, наличия в сточной воде других примесей, например, электролитов, высокомолекулярных соединений.

Существуют различные способы проведения коагуляции, целесообразность применения которых зависит от факторов обусловливающих агрегативную устойчивость систем.

Агрегативная устойчивость коллоидных систем зависит от их строения.

Обладая большой удельной поверхностью, коллоидные частицы способны адсорбировать из воды ионы, вследствие чего соприкасающиеся фазы приобретают заряды противоположного знака, но равные по величине. В результате на поверхности возникает двойной электрический слой. Ионы относительно прочно связанные с дисперсной твердой фазой называют потенциалопределяющими . Они нейтрализуются избытком противоионов . Толщина двойного слоя в водных растворах не превышает 0,002 мм.

Степень адсорбции ионов зависит от сродства адсорбируемых ионов к поверхности, их способности образовывать недиссоциируемые поверхностные соединения. При адсорбции ионов одинаковой валентности адсорбционная способность повышается с увеличением радиуса иона и, соответственно, его поляризуемости, т.е. способности притягиваться к поверхности коллоидной частицы. Увеличение радиуса иона сопровождается также уменьшением его гидратации, наличие плотной гидратной оболочки препятствует адсорбции, т.к. уменьшает электрическое взаимодействие иона с поверхностью коллоидной частицы.

Согласно современным представлениям о строении двойного электрического слоя слой противоинов состоит из двух частей. Одна часть примыкает к межфазной поверхности и образует адсорбционный слой, толщина которого равна радиусу составляющих его гидратированных ионов. Другая часть противоионов находится в диффузном слое, толщина которого зависит от свойств и состава системы. В целом мицелла электронейтральна. Строение мицеллы – коллоидной частицы – представлено на рис.1.1.

Разность потенциалов между потенциалопределяющими ионами и всеми противоионами называется термодинамическим φ-потенциалом.

Заряд на частицах препятствует их сближению, чем, в частности, и определяется устойчивость коллоидной системы. В целом устойчивость коллоидных систем обусловлена наличием заряда у гранулы, диффузионного слоя и гидратной оболочки.



Рис.3.1. Строение мицеллы: Рис.3.2. Схема двойного электрического

I – ядро мицеллы; слоя в электрическом поле

II – адсорбционный слой; (I-II – гранула);

III – диффузионный слой;

IV – гидратная оболочка

При движении частицы в дисперсной системе или при наложении электрического поля часть противоионов диффузного слоя остается в дисперсной среде и гранула приобретает заряд, соответствующий заряду потенциалопределяющих ионов. Таким образом, дисперсионная среда и дисперсная фаза оказываются противоположно заряженными.

Разность потенциалов между адсорбционным и диффузным слоями противоионов называется электрокинетическимζ – потенциалом (рис. 1.2).

Электрокинетический потенциал является одним из важнейших параметров двойного электрического слоя. Величина ζ – потенциала обычно составляет единицы и десятки милливольт в зависимости от состава фаз и концентрации электролита. Чем больше величина ζ– потенциала, тем более устойчива частица.

Рассмотрим термодинамические и кинетические факторы устойчивости дисперсных систем:

· Электростатический фактор устойчивости . С позиции физической кинетики молекулярное притяжение частиц является основной причиной коагуляции системы (ее агрегативной неустойчивости). Если на коллоидных частицах образовался адсорбционный слой, имеющий ионную природу, то при достаточном сближении одноименно заряженных частиц возникают электростатические силы отталкивания. Чем толще двойной электрический слой, тем интенсивнее результирующая сила отталкивание частиц, тем больше высота энергетического барьера и тем меньше вероятность слипания частиц. Таким образом, устойчивость коллоидных систем в присутствии ионного стабилизатора зависит от свойств двойного электрического слоя.

· Сольватационный фактор устойчивости . Силы отталкивания могут быть вызваны существованием на поверхности сближающихся частиц сольватных (гидратных) оболочек или так называемых граничных фаз, состоящих лишь из молекул дисперсионной среды и обладающих особыми физическими свойствами. Ядро мицеллы нерастворимо в воде, следовательно, и не гидратировано. Ионы, адсорбированные на поверхности ядра, и противоионы двойного электрического слоя гидратированы. Благодаря этому вокруг ядра создается ионно-гидратная оболочка. Толщина ее зависит от распределения двойного электрического слоя: чем больше ионов находится в диффузном слое, тем больше и толщина гидратной оболочки.

· Энтропийный фактор устойчивости. Обусловлен тепловым движением сегментов молекул ПАВ, адсорбированных на коллоидных частицах. При сближении частиц, имеющих адсорбционные слои из молекул ПАВ или высокомолекулярных веществ, происходит сильное уменьшение энтропии адсорбционного слоя, что препятствует агрегированию частиц.

· Структурно-механический фактор устойчивости. Адсорбционно-сольватные слои ПАВ могут представлять собой структурно-механический барьер, препятствующий сближению частиц. Защитные слои противоионов-стабилизаторов, являясь гелеобразными, обладают повышенной структурной вязкостью и механической прочностью.

· Гидродинамический фактор устойчивости . Скорость коагуляции может снижаться благодаря изменению вязкости среды и плотности дисперсной фазы и дисперсионной среды.

· Смешанные факторы наиболее характерны для реальных систем. Обычно агрегативная устойчивость обеспечивается несколькими факторами одновременно. Особенно высокая устойчивость наблюдается при совокупности действия термодинамических и кинетических факторов, когда наряду со снижением межфазного натяжения проявляются структурно-механические свойства межчастичных прослоек.

Необходимо иметь в виду, что каждому фактору устойчивости соответствует специфический метод его нейтрализации. Например, действие электростатического фактора значительно снижается при введении в систему электролитов, которые сжимают двойной электрический слой.

Сольватация при сольватационном факторе может быть исключена лиофобизацией частиц дисперсной фазы с помощью адсорбции соответствующих веществ. Действие структурно-механического фактора можно снизить с помощью веществ, разжижающих и растворяющих упругие структурированные слои на поверхности частиц.

Дестабилизация системы может быть вызвана различными причинами, результатом многих из них является сжатие диффузного слоя, а следовательно, и уменьшение значения ζ-потенциала. Сжатие диффузного слоя уменьшает и степень гидратации ионов, в изоэлектрическом состоянии (ζ= 0, мВ) гидратная оболочка вокруг ядра предельно тонка (10 -10 м) и не защищает мицеллы от слипания при столкновении, в результате начинается агрегация частиц.

Седиментационная устойчивость коллоидных систем (СУ) – способность дисперсной системы сохранять равномерное распределение частиц по всему объему) обусловлена броуновским движением коллоидных дисперсий и диффузией частиц дисперсной фазы.

Седиментационная устойчивость системы зависит от действия двух факторов, направленных взаимно противоположно: силы тяжести, под действием которой частицы оседают, и диффузии, при которой частицы стремятся к равномерному распределению по объему. В результате возникает равновесное диффузионно-седиментационное распределение частиц по высоте, зависящее от их размера.

Диффузия замедляется с увеличением размера частиц. При достаточно высокой степени дисперсности частиц броуновское движение, как движение диффузионное, приводит к выравниванию концентраций по всему объему. Чем меньше частицы, тем больший срок требуется для установления равновесия.

Скорость оседания частиц пропорциональна квадрату их диаметра. В грубодисперсных системах скорость достижения равновесия сравнительно большая и равновесие устанавливается в течение нескольких минут или часов. В тонкодисперсных растворах она мала, и до момента равновесия проходят годы или даже десятки лет.

Виды коагуляции

В современной теории коагуляции дисперсных систем разработанной Дерягиным, Ландау, Фервеем, Овербеком (теория ДЛФО) степень устойчивости системы определяется из баланса молекулярных и электростатических сил. Различают два типа коагуляции:

1) концентрационную, при которой потеря устойчивости частиц связана со сжатием двойного слоя;

2) нейтрализационную (коагуляция электролитами), когда наряду со сжатием двойного слоя уменьшается потенциал φ 1 .

Концентрационная коагуляция характерна для сильно заряженных частиц в высококонцентрированных растворах электролитов. Чем выше потенциала φ 1 ДЭС, тем сильнее противоионы притягиваются к поверхности частиц и своим присутствием экранируют рост электрического поля. Поэтому при высоких значениях φ 1 силы электростатического отталкивания между частицами не возрастают безгранично, а стремятся к некоторому конечному пределу. Этот предел достигается при φ 1 более 250 мв. Отсюда следует, что взаимодействие частиц с высоким φ 1 -потенциалом не зависит от величины этого потенциала, а определяется только концентрацией и зарядом противоионов.

По мере увеличения концентрации электролита величина ζ – потенциала (ДП) снижается, а φ 1 практически сохраняет свое значение (рис. 3.3).