Следует уделить время небольшому очерку, посвященному колебательному движению. Но прежде необходимо ответить на один важный вопрос. Что понимают под механическими колебаниями? Под ними подразумевают движение, во время которого наблюдаемое тело неоднократно занимает одни и те же положения в пространстве.

Физики различают непериодические и периодические колебания. К первым относят те из них, при которых координаты и другие характеристики тела не поддаются описанию с помощью периодических функций времени. Со вторым видом проще. Периодические колебания - это те, которые можно описать с помощью периодических функций времени. Но что под ними подразумевают? В физике также под колебаниями часто понимают процессы, в определённой степени повторяемые во времени. И отдельно относительно рассматриваемой темы следует сказать следующее. Механические колебания условно можно классифицировать таким образом:

  1. В зависимости от условий возникновения:
    1. Вынужденные;
    2. Автоколебания;
    3. Свободные.
  2. В зависимости от изменения кинетической энергии во времени:
    1. Гармонические;
    2. Пилообразные;
    3. Затухающие.

В статье будут рассмотрены не все, а только некоторые типы колебаний. Отдельно стоит сказать о формулах, их использовании и разнообразии. Если кратко, то их много. Разнообразие, в котором представлены механические колебания, формулы определения их параметров подтолкнули ученых к созданию отдельных справочников, рассчитанных на определённые ситуации. Придумывать самостоятельно, таким образом, ничего не надо. При создании колебательной системы необходимо будет всего потратить полчаса или час на то, чтобы найти формулу под конкретную ситуацию.

Характеристика механических колебаний

Для характеристики механических колебаний используются физические величины, которые позволяют получить необходимые данные. Амплитуда колебания - наибольшее отклонение тела, которое качается от начального значения положения. А что такое период? В нем колебания - это время, которое необходимо телу, чтобы повторить все свои движения, или другими словами, необходимое для совершения одного повторения движения. Что подразумевают под частотой? Под ней понимают число, равное количеству колебаний, совершенных за одну единицу времени. Зачастую в домашних, школьных и университетских опытах за частоту принимают одну секунду. Циклическая частота часто используется вместо понятия количества колебаний, произошедших за единицу времени, и подразумевает его подсчёт, необходимый на совершение одного такого цикла.

Гармонические механические колебания

Под гармоническими колебаниями подразумеваются те из них, физическая величина которых, выбранная для характеристики, изменяется на временном интервале в виде синусоидальной кривой, которую легко отобразить в графическом режиме. При изменении координаты материальной точки, согласно гармоническому закону, импульс, скорость и ускорение изменяются тоже по нему.

Свободные колебания

Когда колебание совершается в системе благодаря первоначальной энергии, то его называют свободным. В качестве практического отображения такого типа физического процесса используют специальные модели: пружинный и математический маятники. Они позволяют работать с самыми распространёнными ситуациями. В качестве математического маятника принимают точку, что колеблется и висит на нерастяжимой и невесомой нити. Такого устройства на земле нет. Поэтому ближе всего к теоретической модели находится конструкция, составленная из шара, диаметр (размер) которого значительно меньше, чем длина нити. Необходимо провести действия физического характера. Отклоните такой шар от своего начального положения и отпустите. И так любой экспериментатор сможет увидеть механические колебания. Период, а также их частота зависят исключительно от параметров системы: длины нити математического маятника, жесткости пружины, массы груза (важно для пружинного маятника). Именно из-за этого свободные колебания ещё называют собственными колебаниями системы. Вполне логично. А частоту, с которой всё происходит, называют системной.

Превращение энергии при механических колебаниях

Потенциальная и кинетическая энергии при движениях тела переходят одна в другую. И то же самое - наоборот. Когда система отклоняется от начального положения равновесия на наибольшее возможное значение, то потенциальная энергия тоже достигает своего максимального значения, тогда как кинетика тела - минимального. Отдельно следует сказать об одном заблуждении, популярном среди людей. Когда достигается положение равновесия, то потенциальная энергия находится в точке своего минимума (обычно считают, что здесь она равняется нулю), тогда как кинетика (а это и импульс тела, и скорость его движения) достигает максимума. На практике учитывается ещё кое-что. В реальных системах присутствуют не потенциальные силы, значение которых не равняется нулю. Энергия системы растрачивается за счёт работы сил опоры, трения воздуха, внутренних сил пружины или подвеса. Постепенно уменьшается амплитуда колебания тела. Такие колебания и называются затухающими. Если сила трения слишком велика, то весь запас энергии может быть израсходован уже за период одного колебания, и движение тела не будет периодическим.

Вынужденные колебания

Под вынужденными колебаниями понимают те из них, которые происходят под влиянием внешней силы, совершающей работу, что меняется во времени. Есть и другая формулировка. Благодаря внешнему притоку энергии, она в самой системе поддерживается на достаточном уровне, чтобы происходили собственно колебания. Чтобы понять это, необходимо провести параллели с реальностью. Примером предмета, совершающего такого вида колебания, являются качели, на которых сидит один человек, а второй его раскачивает. Есть один нюанс. Если внешняя сила компенсирует потерю энергии в системе непрерывно или периодически, без прекращения самого процесса колебаний, то их называют незатухающими вынужденными.

О диапазоне можно отметить следующее. Амплитуда вынужденных колебаний полностью определена силой, которая действует извне, а также соотношением между собственными частотами принимающих участие в процессе сторон. И тут имеет место одно интересное явление. При вынужденных колебаниях периодически можно наблюдать резкое возрастание амплитуды, которое называется резонансом.

Резонанс

Он возникает в тех случаях, когда сила, что влияет на систему, становится очень близкой к её частоте колебаний. Возможен и другой вариант. В том случае, если частота влияющей силы кратна колебаниям самой системы, на которую она воздействует, тоже возникает резонанс. Как он графически изображается? Зависимость амплитуд колебания системы от частоты влияющей силы выражают с помощью резонансной кривой.

Автоколебания

Свое применение автоколебания нашли в технике. Они существуют там, где незатухающие колебания поддерживаются благодаря энергии источника, который может автоматически включать и выключать сама система. В таких случаях можно всерьез рассматривать вопрос присвоения системе статуса автоколебательной. Почему? Тот момент, когда нужно подавать энергию для колебания, отслеживает подсистема, отвечающая за обратную связь. В зависимости от параметров тела, она может оказывать влияние сильно и сразу, или понемногу и постепенно. Она может открывать или закрывать возможность для поступления энергии в общую систему. Это её главное задание. В качестве примера автоколебательной системы можно вспомнить маятниковые часы, где источник энергии - это гиря, а анкерный механизм успешно справляется с ролью подсистемы обратной связи, регулирующей подачу кинетики, от которой зависят механические колебания.

Параметрические колебания

Под этим видом колебаний определяются те из них, которые происходят в системах, что периодически изменяют свои параметры. Что можно о них сказать? Единственное, чем определяются амплитуда и сила колебательной системы, - это её параметры.

Окружающий нас физический мир преисполнен движением. Практически невозможно найти хотя бы одно физическое тело, которое можно было бы считать находящимся в состоянии покоя. Кроме равномерно поступательного прямолинейного по сложной траектории, движения с ускорением и прочих, мы можем наблюдать воочию или испытывать на себе влияние периодически повторяющихся перемещений материальных предметов.

Человек давно заметил отличительные свойства и особенности и даже научился использовать механические колебания в своих целях. Все периодически повторяющиеся во времени процессы можно назвать колебаниями. Механические колебания являются лишь частью этого многообразного мира явлений, происходящих практически по одним законам. На наглядном примере механических повторяющихся движений можно составить основные правила и определить законы, по которым происходят электромагнитные, электромеханические и прочие колебательные процессы.

Природа возникновения механических колебаний кроется в периодическом превращении потенциальной энергии в кинетическую. Описать пример, как происходит превращение энергии при механических колебаниях, можно, рассматривая шарик, подвешенный на пружине. В спокойном состоянии сила тяжести уравновешивается пружины. Но стоит вывести систему из состояния равновесия принудительно, спровоцировав тем самым движение с сторону точки равновесия, как начнёт своё преобразование в кинетическую. А та, в свою очередь, с момента прохождения шариком нулевой позиции начнёт преобразовываться в потенциальную. Этот процесс происходит столь долго, насколько условия существования системы приближаются к безупречным.

Математически идеальными считаются колебания, происходящие по закону синуса или косинуса. Такие процессы принято называть гармоническими колебаниями. Идеальным примером механических гармонических колебаний является движение маятника в когда отсутствует влияние сил трения. Но это совершенно безупречный случай, добиться которого технически весьма проблематично.

Механические колебания, несмотря на их продолжительность, рано или поздно прекращаются, и система занимает положение относительного равновесия. Происходит это по причине растраты энергии на преодоление сопротивления воздуха, трения и прочих факторов, неотвратимо приводящих к корректировке расчётов при переходе от идеальных к реальным условиям, в которых существует рассматриваемая система.

Неотвратимо приближаясь к глубокому изучению и анализу, приходим к необходимости математически описать механические колебания. Формулы этого процесса включают такие величины, как амплитуда (А), (w), начальная фаза (a). А функция зависимости смещения (х) от времени (t) в классическом виде имеет вид

Также стоит упомянуть о величине, характеризующей механические колебания, имеющей название - период (T), который математически определяется, как

Механические колебания, кроме наглядности описания процессов колебаний немеханической природы, интересуют нас некоторыми свойствами, которые при правильном использовании могут оказать определённую пользу, а при их игнорировании - привести к существенным неприятностям.

Особое внимание требуется уделять явлению резкого скачка амплитуды при наступающих при приближении частоты воздействия вынуждающей силы к частоте собственных колебаний тела. Оно называется резонансом. Широко используемое в электронике, в механических системах явление резонанса в основном проявляет разрушительный характер, его необходимо учитывать при создании самых разнообразных механических конструкций и систем.

Следующим проявлением механических колебаний является вибрация. Её появление может оказать не только определённый дискомфорт, но и привезти к возникновению резонанса. Но, кроме отрицательного воздействия, местная вибрация с небольшой интенсивностью проявления может благоприятно воздействовать в целом на организм человека, улучшая функциональное состояние ЦНС, и даже ускорять и т.п.

Среди вариантов проявления механических колебаний можно выделить явление звука, ультразвука. Полезные свойства этих механических волн и других проявлений механических колебаний широко используются в самых различных отраслях человеческой жизнедеятельности.

Темы кодификатора ЕГЭ: гармонические колебания; амплитуда, период, частота, фаза колебаний; свободные колебания, вынужденные колебания, резонанс.

Колебания - это повторяющиеся во времени изменения состояния системы. Понятие колебаний охватывает очень широкий круг явлений.

Колебания механических систем, или механические колебания - это механическое движение тела или системы тел, которое обладает повторяемостью во времени и происходит в окрестности положения равновесия. Положением равновесия называется такое состояние системы, в котором она может оставаться сколь угодно долго, не испытывая внешних воздействий.

Например, если маятник отклонить и отпустить, то начнутся колебания. Положение равновесия - это положение маятника при отсутствии отклонения. В этом положении маятник, если его не трогать, может пребывать сколь угодно долго. При колебаниях маятник много раз проходит положение равновесия.

Сразу после того, как отклонённый маятник отпустили, он начал двигаться, прошёл положение равновесия, достиг противоположного крайнего положения, на мгновение остановился в нём, двинулся в обратном направлении, снова прошёл положение равновесия и вернулся назад. Совершилось одно полное колебание . Дальше этот процесс будет периодически повторяться.

Амплитуда колебаний тела - это величина его наибольшего отклонения от положения равновесия.

Период колебаний - это время одного полного колебания. Можно сказать, что за период тело проходит путь в четыре амплитуды.

Частота колебаний - это величина, обратная периоду: . Частота измеряется в герцах (Гц) и показывает, сколько полных колебаний совершается за одну секунду.

Гармонические колебания.

Будем считать, что положение колеблющегося тела определяется одной-единственной координатой . Положению равновесия отвечает значение . Основная задача механики в данном случае состоит в нахождении функции , дающей координату тела в любой момент времени.

Для математического описания колебаний естественно использовать периодические функции. Таких функций много, но две из них - синус и косинус - являются самыми важными. У них много хороших свойств, и они тесно связаны с широким кругом физических явлений.

Поскольку функции синус и косинус получаются друг из друга сдвигом аргумента на , можно ограничиться только одной из них. Мы для определённости будем использовать косинус.

Гармонические колебания - это колебания, при которых координата зависит от времени по гармоническому закону:

(1)

Выясним смысл входящих в эту формулу величин.

Положительная величина является наибольшим по модулю значением координаты (так как максимальное значение модуля косинуса равно единице), т. е. наибольшим отклонением от положения равновесия. Поэтому - амплитуда колебаний.

Аргумент косинуса называется фазой колебаний. Величина , равная значению фазы при , называется начальной фазой. Начальная фаза отвечает начальной координате тела: .

Величина называется циклической частотой . Найдём её связь с периодом колебаний и частотой . Одному полному колебанию отвечает приращение фазы, равное радиан: , откуда

(2)

(3)

Измеряется циклическая частота в рад/с (радиан в секунду).

В соответствии с выражениями (2) и (3) получаем ещё две формы записи гармонического закона (1) :

График функции (1) , выражающей зависимость координаты от времени при гармонических колебаниях, приведён на рис. 1 .

Гармонический закон вида (1) носит самый общий характер. Он отвечает, например, ситуации, когда с маятником совершили одновременно два начальных действия: отклонили на величину и придали ему некоторую начальную скорость. Имеются два важных частных случая, когда одно из этих действий не совершалось.

Пусть маятник отклонили, но начальной скорости не сообщали (отпустили без начальной скорости). Ясно, что в этом случае , поэтому можно положить . Мы получаем закон косинуса:

График гармонических колебаний в этом случае представлен на рис. 2 .


Рис. 2. Закон косинуса

Допустим теперь, что маятник не отклоняли, но ударом сообщили ему начальную скорость из положения равновесия. В этом случае , так что можно положить . Получаем закон синуса:

График колебаний представлен на рис. 3 .


Рис. 3. Закон синуса

Уравнение гармонических колебаний.

Вернёмся к общему гармоническому закону (1) . Дифференцируем это равенство:

. (4)

Теперь дифференцируем полученное равенство (4) :

. (5)

Давайте сопоставим выражение (1) для координаты и выражение (5) для проекции ускорения. Мы видим, что проекция ускорения отличается от координаты лишь множителем :

. (6)

Это соотношение называется уравнением гармонических колебаний . Его можно переписать и в таком виде:

. (7)

C математической точки зрения уравнение (7) является дифференциальным уравнением . Решениями дифференциальных уравнений служат функции (а не числа, как в обычной алгебре).
Так вот, можно доказать, что:

Решением уравнения (7) является всякая функция вида (1) с произвольными ;

Никакая другая функция решением данного уравнения не является.

Иными словами, соотношения (6) , (7) описывают гармонические колебания с циклической частотой и только их. Две константы определяются из начальных условий - по начальным значениям координаты и скорости.

Пружинный маятник.

Пружинный маятник - это закреплённый на пружине груз, способный совершать колебания в горизонтальном или вертикальном направлении.

Найдём период малых горизонтальных колебаний пружинного маятника (рис. 4 ). Колебания будут малыми, если величина деформации пружины много меньше её размеров. При малых деформациях мы можем пользоваться законом Гука. Это приведёт к тому, что колебания окажутся гармоническими.

Трением пренебрегаем. Груз имеет массу , жёсткость пружины равна .

Координате отвечает положение равновесия, в котором пружина не деформирована. Следовательно, величина деформации пружины равна модулю координаты груза.


Рис. 4. Пружинный маятник

В горизонтальном направлении на груз действует только сила упругости со стороны пружины. Второй закон Ньютона для груза в проекции на ось имеет вид:

. (8)

Если (груз смещён вправо, как на рисунке), то сила упругости направлена в противоположную сторону, и . Наоборот, если , то . Знаки и всё время противоположны, поэтому закон Гука можно записать так:

Тогда соотношение (8) принимает вид:

Мы получили уравнение гармонических колебаний вида (6) , в котором

Циклическая частота колебаний пружинного маятника, таким образом, равна:

. (9)

Отсюда и из соотношения находим период горизонтальных колебаний пружинного маятника:

. (10)

Если подвесить груз на пружине, то получится пружинный маятник, совершающий колебания в вертикальном направлении. Можно показать, что и в этом случае для периода колебаний справедлива формула (10) .

Математический маятник.

Математический маятник - это небольшое тело, подвешенное на невесомой нерастяжимой нити (рис. 5 ). Математический маятник может совершать колебания в вертикальной плоскости в поле силы тяжести.

Рис. 5. Математический маятник

Найдём период малых колебаний математического маятника. Длина нити равна . Сопротивлением воздуха пренебрегаем.

Запишем для маятника второй закон Ньютона:

и спроектируем его на ось :

Если маятник занимает положение как на рисунке (т. е. ), то:

Если же маятник находится по другую сторону от положения равновесия (т. е. ), то:

Итак, при любом положении маятника имеем:

. (11)

Когда маятник покоится в положении равновесия, выполнено равенство . При малых колебаниях, когда отклонения маятника от положения равновесия малы (по сравнению с длиной нити), выполнено приближённое равенство . Воспользуемся им в формуле (11) :

Это - уравнение гармонических колебаний вида (6) , в котором

Следовательно, циклическая частота колебаний математического маятника равна:

. (12)

Отсюда период колебаний математического маятника:

. (13)

Обратите внимание, что в формулу (13) не входит масса груза. В отличие от пружинного маятника, период колебаний математического маятника не зависит от его массы.

Свободные и вынужденные колебания.

Говорят, что система совершает свободные колебания , если она однократно выведена из положения равновесия и в дальнейшем предоставлена сама себе. Никаких периодических внешних
воздействий система при этом не испытывает, и никаких внутренних источников энергии, поддерживающих колебания, в системе нет.

Рассмотренные выше колебания пружинного и математического маятников являются примерами свободных колебаний.

Частота, с которой совершаются свободные колебания, называется собственной частотой колебательной системы. Так, формулы (9) и (12) дают собственные (циклические) частоты колебаний пружинного и математического маятников.

В идеализированной ситуации при отсутствии трения свободные колебания являются незатухающими, т. е. имеют постоянную амплитуду и длятся неограниченно долго. В реальных колебательных системах всегда присутствует трение, поэтому свободные колебания постепенно затухают (рис. 6 ).

Вынужденные колебания - это колебания, совершаемые системой под воздействием внешней силы , периодически изменяющейся во времени (так называемой вынуждающей силы).

Предположим, что собственная частота колебаний системы равна , а вынуждающая сила зависит от времени по гармоническому закону:

В течение некоторого времени происходит установление вынужденных колебаний: система совершает сложное движение, которое является наложением выужденных и свободных колебаний. Свободные колебания постепенно затухают, и в установившемся режиме система совершает вынужденные колебания, которые также оказываются гармоническими. Частота установившихся вынужденных колебаний совпадает с частотой
вынуждающей силы (внешняя сила как бы навязывает системе свою частоту).

Амплитуда установившихся вынужденных колебаний зависит от частоты вынуждающей силы. График этой зависимости показан на рис. 7 .


Рис. 7. Резонанс

Мы видим, что вблизи частоты наступает резонанс - явление возрастания амплитуды вынужденных колебаний. Резонансная частота приближённо равна собственной частоте колебаний системы: , и это равенство выполняется тем точнее, чем меньше трение в системе. При отсутствии трения резонансная частота совпадает с собственной частотой колебаний, , а амплитуда колебаний возрастает до бесконечности при .

Колебания - это движение тела, в ходе которого оно многократно движется по одной и той же траектории и проходит при этом одни и те же точки пространства. Примерами колеблющихся объектов могут служить - маятник часов, струна скрипки или фортепиано, вибрации автомобиля.

Колебания играют важную роль во многих физических явлениях за пределами области механики. Например, напряжение и сила тока в электрических цепях могут колебаться. Биологическими примерами колебаний могут служить сердечные сокращения, артериальный пульс и производство звука голосовыми связками.

Хотя физическая природа колеблющихся систем может существенно отличаться, разнообразные типы колебаний могут быть охарактеризованы количественно сходным образом. Физическая величина, которая изменяется со временем при колебательном движении, называется смещением . Амплитуда представляет собой максимальное смещение колеблющегося объекта от положения равновесия. Полное колебание, или цикл - это движение, при котором тело, выведенное из положения равновесия на некоторую амплитуду, возвращается в это положение, отклоняется до максимального смещения в противоположную сторону и возвращается в свое первоначальное положение. Период колебания T - время, необходимое для осуществления одного полного цикла. Число колебаний за единицу времени - это частота колебаний .

Простое гармоническое колебание

В некоторых телах при их растяжении или сжатии возникают силы, противодействующие этим процессам. Эти силы прямо пропорциональны длине растяжения или сжатия. Таким свойством обладают пружины. Когда тело, подвешенное к пружине, отклоняют от положения равновесия, а потом отпускают, его движение представляет собой простое гармоническое колебание.

Рассмотрим тело массой m , подвешенное на пружине в положении равновесия. Смещая тело вниз, можно вызвать колебание тела. Если - смещение тела от положения равновесия, то в пружине возникает сила F (сила упругости), направленная в противоположную смещению сторону. В соответствии с законом Гука, сила упругости пропорциональна смещению F упр = -k·S , где k - константа, которая зависит от упругих свойств пружины. Сила является отрицательной, поскольку она стремится вернуть тело в положение равновесия.

Действуя на тело массой m, сила упругости придает ему ускорение вдоль направления смещения. Согласно закону Ньютона F = ma , где a = d 2 S/d 2 t. Для упрощения последующих рассуждений пренебрежем трением и вязкостью в колеблющейся системе. В таком случае амплитуда колебаний не будет изменяться со временем.

Если не действуют никакие внешние силы (даже сопротивление среды) на колеблющиеся тело, то колебания осуществляются с определенной частотой. Эти колебания называются свободными. Амплитуда таких колебаний остается постоянной.

Таким образом, m·d 2 S/d 2 t = -k·S (1) . Перемещая все члены равенства и деля их на m, получим уравнения d 2 S/d 2 t +(k/m) · S = 0 ,
а затем d 2 S/d 2 t +ω 0 2 · S = 0 (2), где k/m = ω 0 2

Уравнение (2) является дифференциальным уравнением простого гармонического колебания .
Решение уравнения (2) дает две функции:
S = A sin(ω 0 t + φ 0 ) (3) и S = A cos(ω 0 t + φ 0 ) (4)

Таким образом, если тело массой m осуществляет простые гармонические колебания, изменение смещения этого тела от точки равновесия во времени осуществляется по закону синуса или косинуса.

(ω 0 t + φ 0 ) - фаза колебания с начальной фазой φ 0 . Фаза является свойством колебательного движения, которое характеризует величину смещения тела в любой момент времени. Измеряется фаза в радианах.

Величина называется угловой, или круговой, частотой . Измеряется в радианах, деленных за секунду ω 0 = 2πν или ω 0 = 2 π /T (5)

График уравнения простого гармонического колебания представлен на Рис. 1 . Тело, первоначально смещенное на расстояние А - амплитуды колебания, а затем отпущенное, продолжает колеблется от -A и до A за время T - период колебания.

Рис 1.

Таким образом, в ходе простого гармонического колебания величина смещения тела изменяется во времени вдоль синусоиды или косинусоиды. Поэтому простое гармоническое колебание часто называют синусоидальным колебанием.

Простое гармоническое колебание имеет следующие основные характеристики:

A) движущееся тело попеременно находится по обе стороны от положения равновесия;
б) тело повторяет свое движение за определенный интервал времени;
c) ускорение тела всегда пропорционально смещению и направлено противоположно ему;
д) графически этот тип колебания описывает синусоида.

Затухающее колебание

Простое гармоническое колебание не может продолжаться сколь угодно долго при постоянной амплитуде. В реальных условиях через некоторое время гармонические колебания прекращаются. Такие гармонические колебания в реальных системах называются затухающим колебаниями (рис.2) . К снижению амплитуды колебаний с последующим их прекращением приводит действие внешних сил, например, трения и вязкости. Эти силы уменьшают энергию колебаний. Они называются диссипативными силами , поскольку способствуют рассеиванию потенциальной и кинетической энергии макроскопических тел в энергию теплового движения атомов и молекул тела.

Рис 2.

Величина диссипативных сил зависит от скорости тела. Если скорость ν сравнительно мала, то диссипативная сила F прямо пропорциональна этой скорости F тр = -rν = -r·dS/dt (6)

Здесь r - постоянный коэффициент, независимый от скорости или частоты колебаний. Знак минус указывает на то, что тормозящая сила направлена против вектора скорости движения.

Принимаясь во внимание действие диссипативных сил, дифференциальное уравнение гармонического затухающего колебания имеет вид: m· d 2 S/d 2 t = -kS - r·dS/dt .

Перенеся все члены равенства в одну сторону, разделив каждый член на m и заменяя k/m = ω 2 ,r/m = 2β , получим дифференциальное уравнение свободных гармонических затухающих колебаний

где β - коэффициент затухания, характеризующий затухание колебаний за единицу времени.

Решением уравнения является функция S = A 0 ·e -βt ·sin(ωt + φ 0) (8)

Уравнение (8) показывает, что амплитуда гармонического колебания уменьшается экспоненциально во времени. Частота затухающих колебаний определяется уравнением ω = √(ω 0 2 - β 2) (9)

Если колебание не может происходить вследствие большого, то система возвращается в свое положение равновесия по экспоненциальному пути без колебания.

Вынужденное колебание и резонанс

Если не сообщать колеблющейся системе внешнюю энергию, то амплитуда гармонического колебания уменьшается во времени из-за диссипативных эффектов. Периодическое действие силы может увеличить амплитуду колебаний. Теперь колебание не будет затухать со временем, поскольку потерянная энергия восполняется в течение каждого цикла действием внешней силы. Если будет достигнут баланс этих двух энергий, то амплитуда колебаний будет оставаться постоянной. Эффект зависит от соотношения частот вынуждающей силы ω и собственной частоты колебания системы ω 0 .

Если тело колеблется под действием внешней периодической силы с частотой этой внешней силы, то колебание тела называется вынужденным .

Энергия внешней силы оказывает наибольшее действие на колебания системы, если внешняя сила обладает определенной частотой. Эта частота должна быть такой же, как и частота собственных колебаний системы, которые бы эта система совершала в отсутствие внешних сил. В таком случае происходит резонанс - явление резкого возрастания амплитуды колебаний при совпадении частоты вынуждающей силы с частотой собственных колебаний системы.

Механические волны

Распространение колебаний из одного места в другое называется волновым движением, или просто волной .

Механические волны образуются вследствие простых гармонических колебаний частиц среды от их среднего положения. Вещество среды не перемещается при этом из одного места в другое. Но частицы среды, передающие друг другу энергию, необходимы для распространения механических волн.

Таким образом, механическая волна является возмущением материальной среды, которое проходит эту среду с определенной скоростью, не изменяя своей формы.

Если в воду бросить камень, от места возмущения среды побежит одиночная волна. Однако волны иногда могут быть периодическими. Например, вибрирующий камертон производит попеременные сжатия и разрежения окружающего его воздуха. Эти возмущения, воспринимаемые как звук, происходят периодически с частотой колебаний камертона.

Существуют механические волны двух видов.

(1) Поперечная волна . Этот вид волн характеризуется вибрацией частиц среды под прямым углом к направлению распространения волны. Поперечные механические волны могут возникать только в твердых веществах и на поверхности жидкостей.

В поперечной волне все частицы среды осуществляют простое гармоническое колебание возле своих средних положений. Положение максимального смещения вверх называется "пиком ", а положение максимального смещения вниз - "впадиной ". Расстояние между двумя последующими пиками или впадинами называется длиной поперечной волны λ.

(2) Продольная волна . Этот вид волн характеризуется колебаниями частиц среды вдоль направления распространения волны. Продольные волны могут распространяться в жидкостях, газах и твердых телах.

В продольной волне все частицы среды также осуществляют простое гармоническое колебание около их среднего положения. В некоторых местах частицы среды расположены ближе, а в других местах - дальше, чем в нормальном состоянии.

Места, где частицы расположены близко, называются областями сжатия , а места где они находятся далеко друг от друга - областями разрежения . Расстояние между двумя последовательными сжатиями или разрежениями называются длиной продольной волны.

Выделяют следующие характеристики волн .

(1) Амплитуда - максимальное смещение колеблющейся частицы среды от ее положения равновесия (A ).

(2) Период - время, необходимое частице для одного полного колебания (T ).

(3) Частота - количество колебаний, произведенных частицей среды, за единицу времени (ν). Между частотой волны и ее периодом существует обратная зависимость: ν = 1/T .

(4) Фаза колеблющейся частицы в любой момент определяет ее положение и направление движения в данный момент. Фаза представляет собой часть длины волны или периода времени.

(5) Скорость волны является скоростью распространения в пространстве пика волны (v).

Совокупность частиц среды, колеблющихся в одинаковой фазе, формирует фронт волны. С этой точки зрения, волны делятся на два вида.

(1) Если источник волны является точкой, из которой она распространяется во всех направлениях, то образуется сферическая волна .

(2) Если источник волны колеблющаяся плоская поверхность, то образуется плоская волна .

Смещение частиц плоской волны можно описать общим уравнением для всех типов волнового движения: S = A·sin ω · (t - x/v) (10)

Это означает, что величина смещения (S ) для каждой значения времени (t ) и расстояния от источника волны (x ) зависит от амплитуды колебания (A ), угловой частоты (ω ) и скорости волны (v).

Эффект Доплера

Эффект Доплера - изменение частоты волны, воспринимаемой наблюдателем (приемником) благодаря относительному движению источника волн и наблюдателя. Если источник волн приближается к наблюдателю, число волн, прибывающих к наблюдателю волн, каждую секунду превышает испускаемое источником волн. Если источник волн удаляется от наблюдателя, то число испускаемых волн больше, чем прибывающих к наблюдателю.

Аналогичный эффект следует в случае, если наблюдатель перемещается относительно неподвижного источника.

Примером эффекта Доплера является изменение частоты гудка поезда при его приближении и удалении от наблюдателя.

Общее уравнение для эффекта Доплера имеет вид

Здесь ν источн - частота волн, испускаемых источником, и ν приемн - частота волн, воспринятая наблюдателем. ν 0 - скорость волн в неподвижной среде, ν приемн и ν источн - скорости наблюдателя и источника волн соответственно. Верхние знаки в формуле относятся к случаю, когда источник и наблюдатель перемещаются друг к другу. Нижние знаки относятся к случаю удаления друг от друга источника и наблюдателя волн.

Изменение частоты волн вследствие эффекта Доплера называют доплеровским сдвигом частоты. Этот феномен используется для измерения скорости перемещения различных тел, включая эритроциты в кровеносных сосудах.

Смотрите задачи на тему "

(или собственные колебания ) — это колебания колебательной системы, совершаемые только благодаря первоначально сообщенной энергии (потенциальной или кинети-ческой) при отсутствии внешних воздействий.

Потенциальная или кинетическая энергия может быть сообщена, например, в механических системах через начальное смещение или начальную скорость.

Свободно колеблющиеся тела всегда взаимодействуют с другими телами и вместе с ними обра-зуют систему тел, которая называется колебательной системой .

Например, пружина, шарик и вертикальная стойка, к которой прикреплен верхний конец пружины (см. рис. ниже), входят в колебательную систему. Здесь шарик свободно скользит по струне (силы трения пренебрежимо малы). Если отвести шарик вправо и предоставить его самому себе, он будет совершать свободные колебания около положения равновесия (точки О ) вследствие действия силы упругости пружины, направленной к положению равновесия.

Другим классическим примером механической колебательной системы является математический маятник (см. рис. ниже). В данном случае шарик совершает свободные колебания под действием двух сил: силы тяжести и силы упругости нити (в колебательную систему входит также Земля). Их равнодействующая направлена к положению равновесия.

Силы, действующие между телами колебательной системы, называются внутренними силами . Внешними силами называют-ся силы, действующие на систему со стороны тел, не входящих в нее. С этой точки зрения свобод-ные колебания можно определить как колебания в системе под действием внутренних сил после того, как система выведена из положения равновесия.

Условиями возникновения свободных колебаний являются:

1) возникновение в них силы, возвращающей систему в положение устойчивого равновесия, после того как ее вывели из этого состояния;

2) отсутствие трения в системе.

Динамика свободных колебаний.

Колебания тела под действием сил упругости . Уравнение колебательного движения тела под действием силы упругости F () может быть получено с учетом второго закона Ньютона (F = mа ) и закона Гука (F упр = -kx ), где m — масса шарика, а — ускорение, приобретаемое шариком под действием силы упругости, k — коэффициент жесткости пружины, х — смещение тела от положения равновесия (оба уравнения записаны в проекции на горизонтальную ось Ох ). Приравнивая правые части этих уравнений и учитывая, что ускорение а — это вторая производная от координаты х (смещения), получим:

.

Аналогично выражение для ускорения а получим, дифференцируя (v = -v m sin ω 0 t = -v m x m cos (ω 0 t + π/2) ):

a = -a m cos ω 0 t,

где a m = ω 2 0 x m — амплитуда ускорения. Таким образом, амплитуда скорости гармонических коле-баний пропорциональна частоте, а амплитуда ускорения — квадрату частоты колебания.